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1. Introduction

Since Jacobi and Klein there has been considerable interest in the problem of the
intersection of quadrics and the study of their moduli. This problem is particularly
interesting when the affine intersection of quadrics completes into an abelian
variety. We conjecture that the intersection of four quadrics in IP® completes into an
abelian variety if and only if their linear span contains a non-degenerate curve of
rank 4 quadrics. In this paper, we show the conjecture for a natural set of quadrics
inspired by dynamics; they lead to abelian surfaces with a certain polarization and
at the same time we reveal their beautiful underlying geometry. We also show how
this idea generalizes to quartics. Other circumstances leading to abelian varieties
have arisen in the classical literature. As pointed out by Weil and fully developed by
Reid [21], the moduli space of the intersection of two quadrics in IPY (N odd)
coincides with the moduli of hyperelliptic curves of genus (N — 1)/2; this problem
has been related to dynamics, specifically to Jacobi’s geodesic motion of ellipsoids,
by Moser [18] and Knérrer [13]. For N =3, Reid’s result leads to the elementary
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fact that an ellipsoid intersects a sphere in IP* according to an elliptic curve. A
dynamical system on this elliptic curve is the famous Euler free rigid body motion,
whose invariant surfaces are given by the sphere and the ellipsoid. In a different
vein, Klein [12] studied the 3-dimensional variety of spherical triangles on the
sphere, which turns out to be the complete intersection of three quadrics in IPS.
Tyurin [22] has studied the question of the moduli space of the intersection of three
quadrics in IPY (N even) and Barth [8] has shown that the question is intimately
related to classifying stable algebraic rank-2 vector bundles on IP2.

Thus, it seems that Hamiltonian mechanics often provides descriptions of the
moduli of abelian varieties. The Arnold-Liouville theorem [6] asserts that a
compact (real or complex) connected n-dimensional manifold M having »
commuting everywhere independent vector fields is diffeomorphic to a torus. In an
integrable Hamiltonian system, the invariants (of sufficient number) define the
manifold M and the Hamiltonian vector fields generated by the invariants in
involution provide the commuting vector fields on M. In many cases, the problem
has much more structure, namely the real invariant surfaces extend to affine
complex varieties. Only after adjoining an appropriate divisor can they lead to
abelian varieties on which the above flows (run with complex time) are linear
motions. These flows are then solvable in terms of abelian integrals. A dynamical
system for which this is possible will be called algebraically completely integrable, as
first defined in Adler and Moerbeke {1, 5].

The Euler rigid body motion mentioned above is nothing else but geodesic
motion on SO (3) for a left invariant metric which can be interpreted as geodesic
motion on a 2-dimensional ellipsoid. The generalization of this problem to geodesic
motion on ellipsoids of arbitrary dimension leads to a description of the moduli
space of the intersection of two quadrics in IPY (N odd) mentioned above. Another
way of generalizing the SO (3) problem is to turn to integrable geodesic motion on
SO (4)= S0 (3) ® SO (3), of which special instances have been studied around the
turn of the century in the context of rigid body motion in fluids by Clebsch, Steklov,
and Lyapounov (see Adler and van Moerbeke [5]), although obstensively in the
context of E; = SO (3) x R®. This leads to an example of four quadrics in IP® whose
complete intersection is an abelian surface only after blowing up and down.
This has led to a classification of the left-invariant metrics on SO (4) for which
geodesic flow is algebraically completely integrable [3], as announced in {2, 16].
This set of metrics consists of three different strata, a first one, for which the
invariant surfaces complete to hyperelliptic Jacobians, a second stratum (Manakov
metrics) leading to abelian surfaces with a polarization (1,2) and a third set to
abelian surfaces with a polarization (1, 6). The first two cases lead to examples of
four quadrics in IP® whose complete intersection is an abelian surface only after
blowing up and down. The third case finally leads to examples of 3 quadrics and 1
quartic in IP®. However a number of systems do not have quadratic invariants, but
still they linearize on abelian surfaces with principal and (1, 2)-polarizations. For
instance, the equations for the Kowalevski top linearize on abelian surfaces of type
(1, 2), as does the Hénon-Heiles system and the Manakov geodesic flow. Therefore
there must exist a rational map transforming one problem into the other. This relies
heavily on finding good normal forms for the quadrics defining abelian surfaces of
that polarization. The results contained in this paper have provided the key to
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realizing both the Kowalevski and the Hénon-Heiles systems as a Manakov
geodesic flow on SO (4) and thus providing a Lax pair for these systems. Observe
that abelian surfaces are not simply connected, and therefore can never be
themselves projective complete intersections. And so, the complete intersection of
the four quadrics in IP®, if it is to be related to an abelian surface, must contain a
singular locus &. The nature of this singular locus will play an important role in this
paper.

The main purpose of this paper is to describe a natural class of four quadrics
0,,..., 0, in IP® of the block form

3

2.2 .2 2 2
Y OFxE+yEe s X s+ 29 143 XiXir3) — €XG
1

leading to abelian surfaces and provide their moduli. This class is specified by
requiring that the linear span ¥ of the quadrics contains a non-degenerate curve € of
rank 4 quadrics (sum of four squares), rather than a discrete set of points, as would
be the case for a generic set of 4 quadrics. This set of quadrics can equally well be
described, as is done in Theorem 1 (Sect. 2), by requiring that their intersection in
IP® be singular along some component & at infinity (i.e., at x, = 0) of genus =+ 3; then
& is a natural 4 — 1 unramified cover of €. The abelian surface is then obtained by

4
blowing up the intersection () {Q; = ¢;x2} in IP° along & and blowing it down along
1

the complementary locus at infinity.

In Sect. 3, we provide a full description of the family of linear spans ¥ described
above and we show that it splits into two definite classes, according to whether
has genus 0 or 1 (Theorem 2). With regard to a fixed set of variables, each of these
classes is parametrized by high-dimensional varieties ¥~ spelled out in Theorem 3.
However, allowing linear changes of variables, these classes, away from the branch
locus of ¥, can be described by a set of four canonical quadrics (normal forms)
depending on 3 parameters in the first case and 4 parameters in the second case; this
is carried out in Sects. 4-6. Theorem 7 of Sect. 6 is the main result of this paper. In
Sect. 7, we assume that € contains a degenerate curve component; this leads
naturally to K3 surfaces. The parameters mentioned above produce moduli not
only for the intersection of quadrics, but also for abelian surfaces of principal
polarization (hyperelliptic Jacobians) and polarization (1,2) (Prym varieties of
double covers of elliptic curves). Moreover these normal forms yield the set of
invariants for the algebraically completely integrable geodesic flows on the group
SO (4) for specific families of left-invariant metrics. The latter have been classified
by usin [2, 4] and the integration of the associated geodesic flows as linear motions
on abelian surfaces has been carried out in [5], using the normal forms exhibited in
this paper; the latter yield a handy set of coordinates in which to perform the
linearizations. Finally, that discussion has led to a new left-invariant metric on
SO (4) whose geodesic flow has three quadratic invariants Q;, 1 £i <3, and one
quartic invariant Q,. Upon blowing up the intersection in IP® defined by these
equations along one component £ of the singular locus at infinity and upon blowing
it down along the other components, one obtains an abelian surface of polarization
(1,6). Then & is a natural 4 — 1 cover of a curve of “‘rank 4 quartics” in the 6-
dimensional projective space of quartic invariants generated by 0,0, 1 Si<j<3,
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3
and Q,. A quartic has “rank 4” when it has the form ) x? (quadric);. Most of the

0

ideas for quadrics can then be extended to quartics. This is the object of Sect. 8.

As has been remarked, the methods employed are strongly guided by dynamics.
We very much hope that these results will inspire the algebraic geometer to turn
them into a more algebraic theory. Along these lines, there are some natural
questions and extensions of these results. Given the intersection of four quadrics Q;
in IP° of the most general form, it is plausible to conjecture that the affine
intersection completes into an abelian surface if and only if the linear span ¥
contains a curve of rank 4 quadrics. Moreover what is the proper algebraic-
geometrical framework in which to generalize the results about quartics in IP®,
Does it lead to descriptions of abelian surfaces with other polarizations?

Notations. Consider the linear span
N
V(Qla"', QN)= {ZliQia(ilw--aAN)eIPN_l} =~ PN_l
1
of N quadrics Q,,..., Qy and its discriminant variety

N
4(Q4,...,0x)= {Z 4;Q; such that determinant (3 1,0,) = 0}
1
SV(Qq)..., Q) =PV 1,
This paper deals with the situation of 4 quadrics Q,, ..., O, in x of the block form !

3
2.2 .2 .2 .
Y OExE+ 9 axt, +2y; 43X %i43)5
1

define 0, = Q; — ¢;x3. Let a;,a;, 5 and a; ; , 3 (1 £ i < 3) be linear functions of X, Y,
Z, U defined by

3
X0, +Y0,+ZQ5+UQ, =Y (a;x} +a;,3 X703+ 28, 113X, X;43). ¢y
1

Then, one checks that

401, Q) =4(Qy,..., Q4) UH,
where H is the hyperplane

H={p=(X,Y,Z,U)elP®* suchthat c(p)=Xc,+ Yc,+ Zc;+ Uc,=0}.

It is easily seen that

4(Qy,...,04)=K, UK, UK, S IP?,
where the K; are three quadratic cones in IP?

Ki={pelP’ H(p)=a,a;,3—al;4;=0}; 2

! Throughout this paper, the vectors x, y or ze IR® have the form
x=(Xy,Xq, X5, %5, X3, Xg) = (x', x") with x" = (x, x,,x,) and x" = (x,, x5, Xg)
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they describe the locus of Q e V(Q,, ..., Q,) such that the it term of (1) is a perfect
square.
Henceforth, let

V=V(0,,....,0)~P V=V(0,,...,0) >~
A=A(Q1,...,Q4), Z=A(Qla---5Q4)‘

The space V will be required to satisfy the following three non-degeneracy
conditions *;

Condition C0O. After alinear change of variables not mixing up blocks there are two
quadrics Q, and Q, in ¥ having the form Q, = x? + xJ + x2and Q, = x2 + x2 + x2.

Condition C1. The three cones K are irreducible (i.e., for every i =1, 2, 3, there is
some quadric in V, containing the term x;x;, ;).

Condition C2. The three cones K; have distinct vertices (i.e., no quadricin ¥ has the
form 97 x? + 7, 3x7, 5 + 2y 43X X4 3)

As a consequence of condition CO, one can pick a basis of V having the
following form:

Q,=x2+x3+x3
2 2 2
Q, = x3+ x5 + x§

€)

3
0, =Z(ai2xi2 + ai2+3xi2+3 + 20 ;43X X4 3)
1

3
Qu=2 (BFx}+ Bliaxlis+ 2B 103 XiXiss)
1

with fixed o; and f; e €. With regard to this basis
a=X+alZ+BU, a3=Y+ol3Z+ B} 3U, a103=0;13Z+ ;143U

and therefore the quadratic equations H; = 0 defining the cones K are linear in the
variables X and Y. Define (see Fig. 1)

¢=K,NnK,NnK,

the set of quadrics in ¥

of rank 4 having the form 3 3
= IP? such that H,(p)=0
O {pe uc A{(p)=0}

3
Z(Yixi+3’i+3xi+3)2 — ;X4
1

? The three conditions C0, C1, C2 are generically satisfied



30 M. Adler and P.van Moerbeke

K, Ka Kj
.
.
A
N
\\ S
\\ A
(N ‘\
N
\\ \\\
\\ \
SN
IR
f”"
g 3
/e P
H m
Fig. 1

Observe that the generic intersection ¥ = K, N K, N Kj is finite and non-empty.
Whenever € is a curve, it will be called non-degenerate, if € & hyperplane in
V = 1P3. Also define

4

I={Q;—¢,=0, xe €%},
1

4

I=(){Qi— ;x§=0, xeP°},
1

&= {peln{x,=0} where I is singular} & In {x,=0}.

Whenever &is a curve, it will be called non-degenerate, if & ¢ a 2-dimensional plane
of the form

Dw

! {Aix;+ 4;1 32043 =0} N {x, =0} = P,

i

Let ¥ be the space of linear spans ¥ with regard to a fixed set of variables x. It is
naturally acted upon by the subgroup

g§=580GLQ)®GLQ)®GLR)® GL(1)=GL(T),

which induces linear maps on x, and each block (x;, x;, ;) for 1 £i < 3 and which
permutes the order of the blocks. Thus it is natural to define .# = ¥7/g.

2. Curves of Rank 4 Quadrics and Singular Curves at Infinity

In this section we exhibit a natural 1-4 map from the set of rank 4 quadrics € to the
singular locus & of T at oo. Then under some mild conditions, the set of rank 4
quadrics and the singular locus will be curves at the same time; therefore if 4 is a
curve, & is a four-fold cover of ¢, which is sometimes unramified and sometimes
ramified. As discussed later, the unramified case appears whenever the affine
intersection of the quadrics completes into an abelian surface, while the ramified
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situation occurs whenever the affine intersection completes into a K3 surface; the
former case is discussed in Sects. 4-6 and the latter in Sect. 7.

Throughout this section, the space V of quadrics satisfies conditions C0, C1, C2
and we pick a basis @, ..., @, of the block form; see the notations in Sect. 1. Define

%' =% \ {line and point components} = V'
&' = €\ {its degenerate and point components} < I {x, = 0}.

Then €’ is parametrized as mentioned in Sect. 1 by a family of rank 4 quadrics
having the form

Q(P) =Q(p)—c(p)xi= Z(Vi(l’)xi + 903D Xi43)> —c(P) X5, pe€’.
Theorem 1. There is a 1-4 map from €' to & given by
pT',nI=4 points,
where

3
I,=2-dimensional plane: ()
i=1

{?i(P)xi+Vi+3(P)xi+3 =0}

xo=0, 15is3
while the map
ENE'
4 , 20, T
gAY (i, where  (ny(9),....na(q)" ekernel | == (a) |,
1 0sjs6

J

provides the inverse. Hence €’ and &' are curves simultaneously.
The surface I experiences a two-fold normal crossing along &', with pinch points
occuring at c(p)=0; unless® u? =u3=u3 on ¢, & can be given by
gl
&= x2 x5 x5 [ (1

w—uk wi—ui ui-ui

where u;= —a; ;. 3/a;+3=—":(P)/7:+3(p) are rational functions on €'. Upon
normalizing I along &', the curve &' turns into the curve

- &'
D={02=c<p)}‘

Proof. Let ¢" be a component of €. Then referring to the notations in Sect. 1, the
linear functions of X, Y, Z, U

YD) =01,773(P)=a;43,7:7i+3(P) =G 543 and  c(p)

are meromorphic on ¢”; for each 1<is3, y7 or y2,;%0 on 4", or else
%" < (vertex K;) = point; this shows that I', is indeed a two-dimensional plane.
Next we show that

Ir,nI,=T,n{Q'=0}n{Q"=0} )

* This actually happens when % is degenerate; this case is discussed in Sect.7
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for appropriately chosen quadrics Q' and Q" in V. Indeed, for most pointspe ¢”, V
can be spanned by the four quadrics

Q(P)—C(P)X%,%—S(P)—g—;@)xg, Q'—c'xj and Q"—c"x§;

their intersection is I as well. Since, evidently

c{O(p)= @ =
F,,—{Q(p)—O}n{ap @)—0},

we have that (2) holds.

To show that the image of the map above is in &, notice that the gradient
8(Q(p) — c(p)x3)/dp of one of the defining relations Q(p) — ¢(p) x2 =0 clearly
vanishes along the plane I',. More is true: the image is in &', as x;, 3/x; (constant
on I',) is a non-constant function of p € ¢" for some 1 < i < 3. To see this, we must
distinguish between two cases:

(i) When #” is nondegenerate. Then

(’ﬂ)z < 7:(p) )2= 4(X,Y,Z,U)
X

Vi+3(P) a;,.3(X,Y,Z,U)
since otherwise ¥” < hyperplane <IP3, violating the nondegeneracy of €".
(ii) When %" is degenerate. This case is completely spelled out in Sect. 7 and
Appendix 1; from that analysis it turns out that for some i

X453\ ( 7:{P) >2
—_ =|———} Fconst.
( X ) rnl 7i+3(P)

Having defined a map from €’ to 6’, we now show that it is 1-4; by a degree
count, it suffices to show that the set (2) is finite. In (2) we may pick Q' = @, and
Q" a generic element in V of the form

r,nl,

# const (independent of pe¥®”),

3
Q":'Z(“izxiz+°‘i2+3x12+3+2°‘i,i+3xixi+3)— 3
T

Then observing that u,(p) =+ const (for some /) on ¢ " [see (i) and (ii) above], we get

InI=I,n{Q;=0}n{Q"=0}
2+ x3+x3=0
= 1 X3P, (u;) + X3P, (uy) + X3P (u3) =0 ¢, 4
Xiez=u;(P)x;, i=1,2,3
where
Pi(u)=of +af s +20; ;4 30

The right hand side of (4) consists of four points for most p € €” unless the two first
equations in the brackets are proportional, i.e.,

Py (u1(p)) =P, (u,(p)) = Py (u3(p)), for most pe®”. )
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In particular picking Q" = Q, forces u, (p) = u, (p) = u,(p) = u(p)forallpe€”, by
possibly flipping the signs of some x;. Since u(p) is nonconstant along €”, the
polynomials P;, P, and P, agree for a continuum of values by (5) and hence
P, (u) = P, (u) = P5(u). This implies that the generic element Q" in (2) would have
the form
Q" =070y + 05 Qs + 20,4 (¥ X4+ X2 X5+ X3 X6),

showing that V'is three-dimensional, which is absurd. Thus I', n Tis a finite set and
hence it consists of four points. This ends the proof that the map ¥’ — & isa 1-4
map, as it holds on each component ¢” of €.

Conversely, we now proceed to construct the inverse map &' N %’ in the
following fashion. For g€ &”, a component of &', define

(e (@) .. 3 (q)) ekernel (M> ©)

0(Xgy ... s Xg)
the rank of that Jacobian matrix being <4 (and =3 as will be shown in Remark 1 at
the end of the proof) along &” and define accordingly the unique quadric

4 3
Q@@ E;&(Q)Qi(x) EZI:(V? (@ x?+ 7 3(@) x5 +27; 3@ x;x;.3) €V @)

Statement (6) expresses that

00Q(q)

=0 i=0,1,...,6,
Ox; !

x=q

amounting to the linear system

{V%(‘])xi+7i,i+3(‘1)xi+3=0 } i=1.2.3
2 T Ay Ly e
Vi,i+3 (@ X +¥iv3(@) x;43=0

Hence the determinants (y?y7,; —9?;43)(9), i=1,2,3 all must vanish, unless
X;=X;,3=X,=0 for some / along &”, which is ruled out by condition C2. Hence

3
40)) =;(?i(Q)xi+?i+3(q)xi+3)2

is a rank 3 quadric for every g € £”. By the non-degeneracy of &', for some i and
along each component of &, the ratio of Q(q) coefficients satisfies

Vi,i+3(‘I)=+Vi+3(q)= _( X )
?’il(q) )] Xit3

and so Q(q) defines a curve of rank 3 quadrics in V ~ IP3 as g varies along &”. This
curve is not a union of lines, for if it were, by Appendix 1, each line would be of the
form x2+(1+6)x3+tx3, and so & would be a union of points which is
contradictory. By following through the maps €'~ &' €/, it is easily seen that
we have constructed the inverse of the map from €’ ~ &, thus proving the first part
of Theorem 1.

= non-constant function of ge &',
q
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The curve &’ is given by (1), namely by adjoining the functions x, /x; and x,/x;
to €', as a consequence of putting x;,,=u;(p)x; into @, and @,:

xXI+x3+x2=0, Wxl+udxi+uixi=0.

Then the remaining functions x,, x5 and x viewed projectively are rational on &”.

Next we show that I experiences a two-fold normal crossing along &’. The
formula (1) provides a parametrization of & < Iin terms of pe%’. We seek to
parametrize the surface I, in the neighborhood of &, by p and x,; to do this, we
extend the function p to a neighborhood of & in I, by solving the following
equation for p:

Zd,.ui(p)=2d,.x—;ti, d,e T, fixed, ®)
the right hand side being a function defined on I. This can be done, since the u;(p)
are non-constant meromorphic functions on &’. Consider the local change of
variables in I\ &' near &’
3
(an ey x6) Wlth x3 = 1 - (x09pay19y25 ayS)’ WIth Zdiyi = 0
1
defined by

X

:3(1’,xo)=ui(l7)+xo% i=1,2,3,

X .
xi(p’x0)=;;(l’a0)+xo}’i+3 i=1,2,

with ) d,y,=0 imposed to make it compatible with (8). Using this change of
variables in the quadrics Q(p) and 8Q/dp yields

3

> x2(0,0)92, 5 (0)y? — c(p) = O(x,)

i=1

and
3

Z X2 (2,0) {7:, 7i+3} () yi= O(x0),

i=1
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in addition to the customary relation defining the coordinates,

3

Y dy;=0.

1
Here, the Wronskian {y;, y;+3} =73 (y:/7:+3)/0p is a meromorphic function on ¥

and &. By picking, for instance, d; =d, =0 and d; = 1, the three relations above
have the solution
[i+13

f% (Y4x1)2}"§ =c(p)+ O(xo)

Xy 2 {V1,)’4}
2= —\ 1 0 o]
Y <x2> {v2,7s} Y1+ 0x) ®

y 3= 0 >
where the ratios

fi= X Ot Viva}”
' Vi2+3

are meromorphic functions on . Using the same change of variables in the
equations @, and Q, yields a linear system in y, and ys

x
1) |4 x_: .
( R > = linear function in (y,,y,) + O{(x,).

2
uy U X

Vs —
5x3

The upshot is that the y, are all rational functions of y,, p and x,.

By picking other d; = 0, one would find two cycled versions of these equations
with the same right hand side c(p) whereas the coefficient of y? in (9) cycles. This
implies that /3 + f3 is a perfect square on &’, because if not branching would occur
at some simple zero of f% + f%, which is not a zero of ¢(p); hence it would occur in
all the cycled equations and thus at such a point 2 + f2, f2 + f%2 and f2 + /7 would
simultaneously vanish, which is checked to be impossible. Thus the only branching
for y, occurs at the zeroes of the meromorphic function ¢ (p) on &, which has simple
zeroes for generic ;.

Remark 1. With regard to the Jacobian matrix (6) in the proof above, note that, if
its rank <3 for a generic element g e &”, it would lead to a surface of rank 3
quadrics, which can be eliminated using condition C1.

Remark 2. As pointed out, Theorem 1 also holds for a degenerate component €”;
then the map from %" to & is worked out explicitly in Sect. 7 and Appendix 1, where
it is also shown that I'is a K3-surface after blowing up the surface along &. In this
case, the functions u; satisfy u? = u% = uZ and thus the expression (1) for the curve &’
must be slightly modified.
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3. When Does ¥ Contain a Curve of Rank 4 Quadrics?

As before, the space V satisfies conditions C0, C1, and C2 and thus contains a basis
of the form (1.3); note that x, does not play any role in this section. This section
addresses the question how to describe the set of spaces ¥ of quadrics depending on
a given set of variables x,,..., xs such that V contains a non-degenerate curve of
rank 3 quadrics (rank 3 and not 4, since x, does not play any role here). It is shown
that this set splits up into two very distinct strata, described in detail in Theorems 2
and 3. Each of these strata leads, as will appear in later sections, to different types of
Abelian surfaces. Before being able to do so, one must provide a parametrization of
the linear spaces V (with regard to the fixed set of variables x,, ..., x¢) in terms of
some canonical basis in V; this parametrization is only valid in a certain affine
patch, while the different patches can be distinguished, one from another, by the
configuration of the three vertices of the cones K;. This indispensable but tedious
classification is stated in Lemma1 and proven in Appendix 3. Finally, for future
use, we define the 3 x 6 matrix of coefficients of the basis (1.3)

A=(1 of B} O ivst+Biiss) o als—olies BFBHs—Bliva)i=1.2,3>

the square matrix
B=(1 “i2+3 Bi2+3)i=1,2,3

and the 3 x 9 matrix (4, B).

Lemma 1. The linear span of quadrics V subject to the customary non-degeneracy
conditions C0, C1, and C2, admits, in appropriate coordinates, a basis either of the
normal form

NFI: Q,=x}+x}+ x}
Q;=x3+ x5+ x5
Q3= aZxi + (x; + asxs5)? + (13 xF + axZ + 2036 X3 X)
Qs = (x; + Baxs)® + B3x3 + (B35 + BexG + 236 x3%6)

or of the form given by NF2, ..., NF9 as listed in Appendix 2, up to permutations of
the Q; and up to the following permutation of the variables x;:

(i) interchanging the 3 blocks (x;, x;, ;) of variables

(ii) interchanging (x,,x,,X3) <> (X4, X5, Xg),
NF1 turns out to be the generic situation, while NF2, ..., NF9 can be regarded as
boundary cases.

Proof. The configuration of the three vertices of the cones K}, i=1,2, 3 in V serves
to distinguish between the nine cases. The proof of this lemma appears in
Appendix 2.

Theorem 2. The linear span V of quadrics satisfying conditions C0, C1, and C2,
contains a non-degenerate component €' = € — IP* of rank 3 quadrics if and only if
the following two conditions are satisfied.

(1) V has a basis of the form NF 1 (besides one other case where V has a basis of the
Jorm NF3, which is a limiting case of NF1) and
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(ii) €' =€, where € is either an irreducible rational curve with vertex (K,)e €
(Case 1) or an elliptic curve (Case2).

We now describe in terms of the basis NF 1 the exact conditions leading to Case 1
or Case2:

Case 1. € = irreducible rational curve with each vertex (K)e %
<> the cones K, are linearly independent and K;n K;= € u line;;
<> the basis NF1 of V satisfies the conditions
o, =Ps=0,rankA<2and B2
(spelled out in Table 1) with the quantities
s, Ba,r s, e, B3, Bs and a2 — B3 all +0.

Case 2. € = elliptic curve
<> the cones K; are linearly dependent
<> the basis NF1 of V satisfies the condition: rank (4, B) <2
(spelled out in Table 1) with

*s, Bas o3, Bs *0

og or B+ 0, ay or Bs+0

af—af or f7—Pi+0

2 2 2 2
oy —Pioroa;—p:+0
aZ—p2or p2—oal+0.
Remark. Observe that the normal form NF 1 is invariant under the involution

(xl s x4) H(xza xS)’ (x3 ) x6) Stay, (G4, aS) ""(ﬁs s B4) ]
(a39a69a36) H(B3a B69ﬂ36)'

Both the conditions in case 1 and case 2 are invariant as well under this involution,
so that every identity appearing in Table1 is either self-dual or the dual identity
holds. Also with regard to Table 1, notice that without loss of generality, we may set
W36 = U300, B35 = B3 B¢ Dy absorbing the sign of a,¢ and ;¢ into a5 and B,

Proof. In view of the special form of Q, and Q, in (1.3), the set of rank 3 quadrics
% < V is given by the following equations

€=K,nK,nK;
X,Y,Z,U)elP?, H,=aaq,,, —aﬁi+3, i=1,2,3,
E(X+ai22+ﬁi2U) (Y+°‘i2+3z+ﬁi2+3
~ (0, i+3Z+ B i+3 U? . ®

=4, Z, X+ m(Y,Z,U)=0,
¢,(Y, Z,U) linear.

Then € contains a nondegenerate irreducible curve €’ (i.e., not in a hyperplane, in
particular not in ¢, =0 and not in U=0) if and only if

3
En{l,=Y+.. 0= {£:X+m=0}n{£, +0}
1

={(Py, Py, Py)=(l1,¢5,635) A(my,my,m3)=0} N{£ X+ m, =0} n{¢; +0}
={P,(Y,Z,U)=0} n {P,(Y, Z,U)=0} " {¢, X+ m, =0} N {£, + 0}
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(Using the identity ) ¢, P,={/,{/Am) =0 and ¢, + 0) contains a non-degenerate
curve €. Therefore it suffices to investigate under which conditions the varieties
P, =0 and P, =0 have a non-degenerate curve in common.

The polynomials P, and P, will take on quite different forms according to
whether Vis spanned by a basis of the form NF 1, ..., or NF9. In this proof we shall
deal with the basis NF 1, while the remaining NF2, ..., NF9 will be investigated in
Lemma 2. For the basis NF1, substituting a; =o,,=f,=0,5s=0, a, =, =1,
tys =05, f,4=04 into (1) leads to

Py(Y,Z,U)=Y*(Z-U)+ Y(aZ? + bZU + cU?) + ZU(dZ + eU)
with a=of, b=p2—ol+pi—ad, c= —pi, e
d=0f (B3 —a3), e=P3(Bi—ad)

while P,(Y,Z,U) is a similar expression. Under what conditions do the
polynomials P, and P, have a common factor which is non-linear? Since the
common factor is not allowed to be in the hyperplane U = 0, we may set U = 1. Now
we are facing two possibilities according to whether P, (Y, Z, 1) is reducible or not.

Case 1. Py(Y, Z,1) is reducible. Then P,(Y,Z,1)=0 and P,(Y, Z, 1) =0 define a
non-degenerate curve € if and only if they have a common quadratic factor. By
careful inspection, P, (Y, Z, 1) can be shown to factor in exactly five different ways,
recorded in the first column of Table 2. Each way of factoring implies relations at
the level of a, b, ¢, d, e; they themselves, upon using their expressions (2) in terms of
the «, f# vield the relations listed in column 3. In the last column it is seen that all
cases, but case (iv) g, violates either condition C1 or the non-degeneracy of €. A
remark at the end of the proof of this lemma, will sketch the proof of the violation in
case (ii) (Table 2) for instance.

Hence from Table 2 it is seen that the only admissible case is (iv)a: a4 and
Bs =0 with a5 and B, # 0. Note from (iv) that also a3 + B3, or else Y*(Z~1)=0,
which would violate the non-degeneracy of ¥. Equations ¢, X+ m, =0 and
Y(Z-1)+aZ?+bZ+c=0 provide X and Y in terms of Z, which upon
substitution into H;(X,Y, Z,1) =0, gives rise to a 4* degree polynomial identity
Y (e, f)Z'=0in Z, if € is to be a curve. Hence all ¢;(a, f) vanish, leading to
the 5 relations 1. in Table1 upon using «, = ;=0 and the inequalities f,,
as,a2 — B2+ 0. They are easily seen to be equivalent to rank A4 and rank B < 2.
The remaining relations in Case 1, Table 2 (which will be useful in later sections) are
merely consequences of 1. and 2. With regard to the inequalities, we already have
shown B,,as,a2 — B2=+0. As to the remaining inequalities, conditions C1 and
C2imply a5, o6, B3, B * 0; indeed using 1. and 3. (Case 1), a5, S, # 0 and condition
C1, we see that a3 and a vanish simultaneously, while a3 = &g =0 would imply
Q5= (x, + a5 x5)? violating condition C2. We proceed similarly for 8, and f;.

Case 2. P,(Y, Z,1)isirreducible. If P, = P, =0 is to define a curve &, then the poly-

nomials P, and P, must be proportional and since (P5, P,)=(1, —a3) Y?>Z+ ...,

we must have in particular P, (Y, Z,1) = —a}P;(Y, Z,1) for all ¥, Z. Then also
3

P =(a}—1)P;; indeed Y ¢,P,=0 yields ¢, P, =(a} £,—¢;)P;, and since the
1
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linear expressionsZ, and a%¢, —£5 do not vanish on the curve €, the polynomials P,
and P; vanish simultaneously; then the irreducibility of P; and the fact that
P=(3—1)Y?*Z+ ... imply P, = («Z — 1) P,. Consider now the set

{(a, B)| Py is irreducible and P, = —a} P, for all Y, Z}
= {(, B)| P; is irreducible and /Am= (P, P,,P;)= (a5 —1, —a3,1) P;}

___{ (o, B)| P, is irreducible and there exist functions n;(x, f) £ 0,}
such that n = (11,7, 15) satisfies <n,£> =0, {n,m) =0

(o, B)| P4 is irreducible and there exist #;(a, ), not all zero, such that

3
MfX+my=YnH(X,Y,Z,1)=0 forall X,Y,Z,
1

i.e., the H; are linearly dependent functions of X, Y, Z

of the H;, i=1,2,3, has rank at most 2, i.e. rank
(4,B)=2.

[ P, is irreducible and the 3 by 8 matrix of coefficients
=1 (% p)

The equalities rank (4, B) < 2 are easily seen to be equivalent to all the equalities
1.,2.and 3., of case 2; they in turn imply the remaining equalities of case 2, listed in
Table 1. The equalities combined with the conditions C1 and C2 imply a number of
inequalities, besides a5 and f, + 0 (normal form NF1). Also ag or B¢ = 0, or else
%36 = 36 = 0, violating condition C1. Condition C2 implies &, + 0; indeed o3 =0
and Table 2 would imply o} = o and Q, — a2 Q, would violate C2, and similarly
B3 =0is forbidden. Moreover a3 — B2 or a — B2 + 0, because, if not, a2 = 2 and
then 2a¢ fgot; B3 =0, and thus, since a5 and §; + 0, og = B¢ = 0, which already has
been ruled out. Also o — 8% or B2 — a2 + 0, because otherwise a2 = 2 and the
identities in Table 1 yield

* 203 Byag0s =203 83 (03 Bs — 26 B3) (2306 + B3 B6)
=203 B3 [(23 — B3) 26 Bs + (BE — ad) 23 B3]
= [B3 5% — 23 og + (23 — B3) (%36 + B3 B6)’]
= B3 BE —adog + («F ~ B)ad
=0
which contradicts the previous inequalities. Finally, the irreducibility of the
polynomial P4(Y,Z,1) implies a2 —aZ or f2—B2+0 and also a, or f5+0,

completing the verification of all inequalities, listed in Case 2 of Table 1. This
concludes the proof of Theorem 2.

Remark. As an example we now check the non-degeneracy assertion of case (ii)
Table 2, as promised. There we found that a2 = a2 % 0 and f2 = 2 + 0. Then the
curve ¢ is defined by £, X+ m,; =0 and the quadratic factor appearing in
P;(Y,Z,1) (see Table 2) [which must appear in P, (Y, Z,1) as well]. Hence

¢ {(aiZZ—ﬂi)X=Z(ﬁﬁ—aiZ)}_

Z-1)Y=Z(@2~ ) )
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By the non-degeneracy of €, we have a2 # f3. Clearly from the above expressions
for €, the following five points

(Xa Y’Z)= (_1sai—ﬂ§s OO)’ (0’090)’ (—1’ o0, 1)’ (OO, ﬂ4($a4—ﬁ4)—1’ t ﬁ4/064)),
belong to € and substituting them into H, = 0 leads to the respective equalities
wig=a3ag, Pl =P3Bs, o3+ B3=1, ad=0i(ei— P ", Bi=—Pilei—pD".

Substituting X and Y from (3) into H; = 0, and using the above identities, leads to a
quartic polynomial identity in Z, whose vanishing contradicts C1 and the non-
degeneracy of €.

Lemma 2. Among the spaces of quadrics V having a basis of the form NF 1, ..., NF9,
and leading to a non-degenerate curve €' = 6, we can have a basis of the form NF 1
(discussed in Theorem 2) or NF 3. The space V having a basis NF 3 and having a non-
degenerate curve €' = % is spanned by the following four quadrics

im 0,0, (2522)

o~ 00 5
where Qy,0,,05,0Q, is of the form NF1, subject to the conditions of Case 2
(Theorem 2). Hence the only remaining case, besides the cases discussed in
Theorem 2 is merely a limiting situation of Case 2. Then the curve € of rank 3
quadrics is an irreducible rational curve and the cones K; are linearly dependent.

Proof. The proof follows that of Theorem 2 and we refer the reader to (1) and there
abouts for notation and discussion. We shall discuss one by one the different
normal forms NF2,..., NF9 listed in Appendix 2. Consider

NF2: Qu(x)=(a3x}+alx3)+ (3x} +aixd),
Qu(x)=(P2x} + BixE+ 2B 4% X4) + (BEX2+2B25X2X5) + 2B36 X3 X6,

with o, , B,4, B25 * 0, and (without loss of generality) set ¢, = ;5 =1. From the
discussion centered about (1), the locus € containing a non-degenerate curve leads
to two cases:

(@) P (Y,Z,1) is irreducible; then if € is to be a curve, P,(Y,Z,1) and
P, (Y, Z,1) must be proportional, leading to the following two cases:

@) af =1, B} =0, pi, = B}s, af =al, 5= B3, implying
0, +a2Q, — Q;=x3+alxZ, in violation of C2,
or
(ll) “i;ag,ﬁf,ﬁi,/%:o and (l—ﬂ%S)a%::(l— f4)s

implying € is a degenerate curve.
(b) P,(Y,Z,1) is reducible; check P, has the form:
P, =ZY*+(aZ*+bZ+ )Y+ (aZ+b), with c=1—p2,*1,
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and then one easily checks P, can only factor in two ways:
P,=Y(ZY+c) or P,=Z(Y*+aZY+a)
a,b=0 b,c=0.
Then from H;=XY —1=0 on ¥, conclude
XP,=Y(Z+cX)=0 or XP,=Z(Y+aZ+ aX),

implying % is a degenerate curve; this shows that NF2 can never lead to a curve of
rank 3 quadrics.

NF3: Q3(X)=2x,%x5+203X3X¢
Qa(x)=(BIxT + Bixi +2B1ax,x4) + B3x3 + B5x3 ¢

with a3, ;4,85 or f5+0.

Observe that Z is determined by X, Y via H, = 0 (U = 1); also observe that since
H, =0 (irreducible) and a3 H, — H, = 0 on % and since both relations are seen to be
functions of X, Y only, these two relations must be proportional if € is to be a curve,
leading to the identities and inequalities

BiBi=PBls, 3+ B3=1, o3 p3+ B3Pi=0, 03+ 1, B3 +0.
That € is nondegenerate follows from the irreducibility of H, = 0. That this is the
asserted limit of Case 2 follows immediately upon substituting the identities above
in NF 3 and putting 8, = 1; the latter can be done without loss of generality, since
BB =Bi, +0, by setting 0, ~ 72Q,.
Remark. The case above may be reparametrized as follows
O3(x)=2x,x5+ 2ax; xg
Q.()=(x,+bx) >+ (1 —a Hb2x2+(1—a*)x%, with a*+1,b%0.
NF4-8:  Q3(x)= (03x3 + a2x? + 20,5 x,x5) + (x3 + a2 xZ + 20036x3 %)
Q4 (x)=2x,x, + (B3] + B3 x3) + B xi
with
a, or f,+0, p2=*+p2 if B,=0, and a,5and a;s+0.
Since
P,(Y,Z,1)=ZY*+ (aZ*+bZ+1)Y+(cZ+b), a—c= —als+*0,
P,(Y, Z,1)is easily seen to be irreducible, and so if ¢ is to be a curve, P, and P, must

be proportional; consequently a, # 0, otherwise a,5 =0, violating C1, but «, %0
forces p, =0 and p%=BZ, a contradiction of the above inequalities.

NF9: Q3 (x) = (@3 x2 4+ 2055 x,x5) + (@3 x} +oaZxi+ 2056 X3X6),
Q4 (%)= (Bix3 + 2B ax1 X4) + (B3 X5 + PEx3 + 255X, x5),

* The basis given here is easily seen to be equivalent to the basis of NF3 given in Appendix 2, by
setting O, ~a,5Q; and @, Q4 — B2Q, — B2Q,, and then relabeling
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with a46 f,5 * 0 and o 8, = 0 and set a,; = f,, =1 without loss of generality. The
locus ¥ containing a non-degenerate curve leads to two cases:

(@) P,(Y, Z,1) is irreducible; as above P,(Y,Z,1) and P,(Y,Z,1) must be
proportional, yielding in order a5, f, and 8,5 =0, a contradiction.

(b) P,(Y, Z,1) is reducible; then P, =0 takes the form

Py=fZY%+ (aZ?+bZ+1)Y + Z(dZ+€)=0.

Observe that £+ 0, because otherwise o f, = 0 and P, reducible imply a, = ¢ =0,
and hence P, = Y (aZ? + 1) = 0, which would force € to be degenerate. Also we show
B, =0, otherwise B, + 0 and o, = 0 forces d+ 0 and e = 0, easily leading to P, =0
being irreducible, which is a contradiction. To sum up f=+0, f, =0; this yields
b,d= 0, which forces P, to factor as follows:

P,=f(YZ+r)(Y+s5Z)=0, for some r and s;
then, as a consequence of H; =XY—-1=0on %,
XP,=f(Z+rX)(Y+sZ)=0,

forcing % to be degenerate, which is a contradiction. This ends the proof of
Lemma 2.

Before considering Theorem 3, the reader is referred to the definition of the
space ¥~ of linear spans V of quadrics (with regard to a fixed set of variables
X1,...,Xg), as stated in Sect. 1.

Theorem 3. In parallel with Theorem 2, we distinguish between the two cases:

Case 1. The stratum ¥, in ¥ leading to Casel, with running variables
(a2, B2,02, B%, 04,06, B3, Bs) is a rational variety over

{(“3’a6,ﬂ3’ﬁ6)ec4’ ale +ﬁ§= 1}

Case 2. The stratum ¥, in v leading to Case2, with running variables
(a4, Ba,as, Bs, a3, 02, B2, B2) is a hyperelliptic variety: it is a double cover of
C* = {(04, B4, %5, B85)} ramified over the eight hyperplanes defined by
agt fat o5+ Bs=0. On these hyperplanes and only on them, o} satisfies the

relation
agos B3 — B3aipi=0. @
Proof. As the description of ¥ follows at once from Table 1, we turn to ¥5. The
quadratic equation 6. (Table 1, Case 2) in a2
o3k? + a3 (43 B3 — 4af By — k%) + 4o Bl = )
defines a double cover of (a4, B4, %5, Bs) € C*, ramified over the zero locus of its
discriminant
(403 B3 — 40i P2 — k?)* — 16k* o} B}
= 2u5 Bs + k— 2004 f4) Qous Bs —k+ 2004 B) Qots Bs + k + 20, B4) Qots fs —k — 204 B4)
=II(ay+ Bt o5+ Bs), (this product taken over the 8 possible signs); (6)
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this defines the eight hyperplanes mentioned in the statement. Moreover, by
Table 1, the three remaining quantities 3, aZ and B7 are linear functions of a2 over
(a4, Ba, s, Bs) € C* Hence ¥ can be viewed as a fibering of hyperelliptic curves in
the variables (3, o) over the base space (B,, &5, f5) € €3. To prove the last part of
the lemma, notice that on any of the eight hyperplanes, the discriminant (6) of (5)
vanishes and hence

of = (2k?) 71 (k* — 4 (o3 B3 — a2 B2)),

yielding the identity (4), upon using relation (6). Conversely (4) has for solution
(using o3 + B3 =1)

a4 Ba
ayfatasps’

which put into (5) leads to the equation k = + 2(x, .+ o5 fi5) for the hyperplanes.
The result holds as well when o, B, + a5 B5 = 0; then (4) implies o = 3 = 1/2, which
substituted into (5) yields the eight hyperplanes, concluding the proof of
Theorem 3. ‘

wf=

4. The Rational Curve of Rank 4 Quadrics and a Canonical Basis for ¥V

Allowing linear changes of variables, we provide a canonical basis for the space ¥,
discussed in Case1 of Theorem 2. This situation relates to one of three distinct
strata of left-invariant metrics on SO (4) for which geodesic flow is algebraically
completely integrable.

Theorem 4. Let the space V contain an irreducible rational curve € of rank 4 quadrics
containing the vertices of the cones K,. Then V can be spanned by the three rank 3
quadrics Q;(1 £ i £ 3), corresponding to the three vertices and an appropriate fourth
quadric Q,, which after a suitable change of variables x ~ z take on the form

0,=2—-23—¢12

%) 2

0,=121— 25— ;23 )
3=123~ 25— C32;

Qs=— (21— 2)* + 2(2, — 25)* + 2(23 — 26)* — €425 -
The curve € of rank 4 quadrics, with regard to this basis, is described by

%: o, 0,
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where
6 _ o e
Z-1 z-27z% 72

c(Z)=

The curve € in V has 6 distinguished points, given by the divisor of poles and zeroes of
c(Z). They map into six rank 3 quadrics: the poles correspond to the vertices of the
cones K;, which are the quadrics Q,,Q,, Q5 and the zeroes correspond to the three
other quadrics which are independent of z3.

The affine intersection I=n{Q,=0,z,=1} supports the following two
commuting vector fields:

Xt 2,=12,2¢ X, 2, =252
z,=%24(2, +24) Zy=125Z
2=223(Z;+ 24 2 =232,
23=%2,(2,+24) Z3=12324
247 2375 Z4=125(2z3— Z¢)
25 =2324 Z5=12,(223— 2¢)
Ze=12,2, Zg=12,Z5.

Up to a linear change of variables, the four quadrics Q; provide the four constants of
motion of the completely integrable geodesic flow on the group SO (4) (see Adler and
van Moerbeke [4,5])

o/ ’ 6H WA ] aH
XH‘ X =X /\%9 X =X Aax" (2)

for the left-invariant metric
6
H=%Zlix? + Zli,i+3xixi+3 ’
1
where (A= 4;— 1))
(A34, 435, A36) (Aa6 A32 — Ags 413)°

(/132_/155)2 (A13_A46)2 (/121“/154)2)
A32/165 ’ A13A46 ’ A21A54 ’

=Ay3431 433 A4 As4 45 (
with the sign specification

)‘14125}'36 (A46A32 ——A65A13)3
= A13A21A32A46A54A65 (A65 - A32) (A46 - A13) (A54 - A21) .
Proof. Accordingto Case 1 of Theorem 2, V'has a basis of the form NF 1, with the «

and B subjected to the conditions of Table 1. Then using the basis Q, of NF1,
observe that

Q3= (X2 +asxs)? + (a3 X3+ t6X6)°, Qo= (x; 4 Baxs)* + (Ba x5+ Bsxs)?
and

0((Bsog—a3Be) (43 B3Q; — 2686 Q2) + B3 B Qs — 2306 Qs)
= —(30x, + 06 faXs)’ + (B30xy + Pusxs)?, With 6 =ase+ 3B,
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yield three independent rank 2 quadrics. Upon making the change of coordinates
V1= —oz06(x; + Bax,) Va= —03(x30x, + 0t Bsxs)
V2= PB3Be(x;+ 25 X5) Vs=B3(B30x,+ Pesasxs)
Y3 =03B3B¢ (03 x5 + g X5) Ve =PB3a306 (B3x3+ BeXs),

the three rank 2 quadrics, together with Q, , are seen to be proportional to a new set
of quadrics depending only on one parameter a=1— a3 2, to wit

Q@) =yi+(1-a)y}

Q;(r,@)=ay; — (1 —a)y}

Qi(y, )= ay; + y}

Qi(r, @)= (1 =y’ + (2 —ys) + (r3—ye)*.

The curve of rank 3 quadrics in ¥ with regard to the basis Q; is given by

Q’ . Qz Qs3+Q4

s—a 2+ s s—1 2+ s—a s—1 )2
y1 B Ya s———lyz p Vs S——_1Y3 s_a)"6 .

It is striking to observe that by a rescaling y ~ z and by picking a new basis, the
parameter a in (3) is arbitrary. Indeed

—7010,0=0i(b)

s(s—1)
-a?

L 00,9 =03(2.h)

©)

Q: ()= 0Q3(z,)

(;?_1—1+SQ_—20 % +Q4> (.0) = 042, ),

where a and b are related by a fractional linear map

a(s—1)
s-—-a

b=

and where the rescaling y m z is obvious from the identities above. Hence we may
put a =2 in (3), leading to the announced normal form Q, (up to a trivial rescaling)
and the curve €. The three vertices of the cones K, which belong to €, correspond
to the three rank 3 quadrics Q,.

Finally one checks that the geodesic flow on SO (4) for the metric mentioned in
the statement of Theorem 4, has a set of invariants of the form (3) witha = A;,/45,
upon making the linear transformation x~» y

vi=elexitensXiys), YVirzs=e€rs(@axitex;,;), 1Z5i3,
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with
(ef, ceey eé) =(AgeA12s AesA21, Ags A3y, Aas A3, Asadsy, AgaAss)-

Using the same argument as before to scale out a, the set of quadrics (3) can be
transformed into the set (1). The Hamiltonian vector fields X, of (2) defined by
H=0, and 0, in (1) yield the vector fields X, and X,; they commute because
clearly the vector field X, preserves the quadrics Q and so

0=X,(Q3)=X4,(Q3)={01, 03},

where the Poisson bracket is taken with regard to the SO (4) symplectic structure.

5. The Elliptic Curve of Rank 4 Quadrics and Canonical Bases for V

Consider the situation discussed in Case 2 of Theorem 2, namely where ¥ contains
an elliptic curve € of rank 4 quadrics. The purpose of this section is to find a
canonical basis for ¥ by picking distinguished configurations of points on the curve
and by allowing linear changes of variables; these changes depend strongly on the
geometry of the curve . A first canonical basis is obtained by picking a set of 3
quadrics on €, which are simultaneously diagonalizable (Theorem 5). In that form,
they tie up with the geodesic flow on the group SO(4) for the Manakov metric.
Another canonical basis exhibited in Theorem 6 is constructed by picking three of
the four collinear rank 3 quadrics lying on €; this construction is inspired by Ktter
[14,15]. Both canonical bases, which depend on 4 continuous parameters, will be
crucial in determining the moduli of the intersection of the quadrics.

In Lemma 3, we show that the elliptic curve is non singular away from the
branch locus of the variety ¥; discussed in Theorem 3 and away from 4 additional
hyperplanes. Lemma 4 gives the three points on the curve which yield the first
canonical basis.

Lemma 3. In Case 2, described in Theorems 2 and 3, the curve € < IP? is an elliptic
curve over the Z-plane ramified at the four points

7 —Bs(Bs—5B3B)

oy (0g — Seorzots)

d0==+1,¢e=11;

the curve becomes singular when the a;’s and B;’s belong to the eight hyperplanes
o, * Bt ast Bs =0, mentioned in Theorem 3, or when they belong to the four
hyperplanes 0y =0, a5 =0, B, =0 and 5 = 0; the curve is non-singular everywhere
else. When € is non-singular, then the functions a;/a;;,;=a;;43/%;.5 are
meromorphic of order 2 on € and the following inequality a%aipz — B3azfi+0
holds.

Proof. Putting U=1 excludes at most a finite number of points as otherwise ¥
would be degenerate. Then P, (Y, Z, 1) = 0 defines a double cover of the Z-plane
ramified over the zeroes of the quartic discriminant R(Z) of P;, for which we
provide two alternative expressions

RZ)y= [] [03Z* ~ (¢ +2eBs05) Z+ B3)

g=41

= [ 03(Z—-1) +(d+of +B% ~ B3 —2ea0s) (Z— 1) + (25— b)) (1)

g=t1
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the roots of R(Z) are given by

Zs,=(2u3) ' [£ +26Baos +6 V(£ +2eBans)? —4a2B2], with d=1,

= —Bya; (a5 B3) "1 (Bs — 6B3B4) (g + Seazas), using 7. and 4. (Table 1)
to replace £ (in that order)

_ B3(ﬁ6_5ﬁ3ﬂ4) . 202 :
= T oy (g — Oy o) using o f5 = (ag — 305) (ag +a325) (see 1. in Table 1),

proving the first part of Lemma 3.
When does a pair of roots coincide? Notice that Z, ,=Z _, ,forg= +1or —1if
and only if the discriminant

¢+ 2/348“5)2 - 4“25%
=0ty + Bat Bs—exs) (aa+ By — Bs—eas) (g — Bo+ Bs +e0ts) (g — By — Bs+8ts);

of one of the quadratic factors in R(Z) vanishes; this occurs on the eight
hyperplanes in €* mentioned in Theorem 3. Also Z;,=Z; _, if and only if
BaxsBsa, =0, using the above expressions for Z; ,, combined with the identities.
In particular, when a5 — 0 or f, —0, we have that Z; ,=Z; _,; when f5—0,
Z 1 =2Z_,_;=0andwhena, -0, Z, ,=Z; ;= co.Thus the curve % is singular
precisely on the twelve hyperplanes given in the lemma.

Finally, the functions a;/a; ;. ;= a; ;. 3/a;, ; are rational in X, ¥, Z, U and can
therefore be viewed as meromorphic functions on ¢. We now check they have order
2, for i=3 for instance, the two other cases i=1,2 being similar. Solving the
quadratic equation P;(Y, Z,1) with regard to Y shows that the meromorphic
function

as _ Y+oaiZ+ B3
aze 36Z+Pis

on % has polesat Z =1 and Z = — f§;¢/a3¢ Only. Then from the second expression
(1) for the discriminant R(Z), we have the estimates

2_p2

as as — P <1i1)

= = +0( near Z=1
a3 2(036+P36) \Z—1 0

4,202 pa_2p2 +
=a3a5ﬂ5 ﬂ3a4ﬂ4 1—1 +O(1) near 7 = __gﬁi_ (2)
2036 (36 + B36) (236 Z+ Bse) U3

(where + refers to the + sheet); it shows ag/a;¢ has simple poles at Z=1 and at
Z = — B,¢/a;c on the + sheet only, provided the leading terms in (2) differ from 0,
or oo which is generically so, in view of Theorem 3. Therefore ag/a,¢ has order two
generically and hence always, as long as the parameters «, f§ stay away from the 8
hyperplanes given in Theorem 3; there we also observed that a%a2p2 — p5a2p2=0
holds on the 8 hyperplanes only. This concludes the proof of Lemma 3.

Remark. From equation 6. (Table 1) it follows a5 # 0, when ¥ is non-singular and
by symmetry also 5 # 0.
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Lemma 4. Let the elliptic curve € be non-singular and let o B2 + 23 =+ 0; then
there exist three points p,,p,,ps € €, such that the meromorphic functions a;, a;, 5,
a; ;431 £153) on € satisfy

a14 Ayq azs azs 36 a3e
— e , T = , — = —— 3

a, P2) a, (P3) a, (r3) a, (P1) a; (r1) a; (p2) €)]
witha, ;.3 +0atp,,p,,p;€%.

Proof. Before proceeding to the actual proof, consider theroots ¢ =g, ando =0,
of the quadratic polynomials R and S defined by

R(Q) = 0* + 2360+ 23 B3 (23 B3 + BG0d) Bs * =0
S(0) =0% —2B360 + a3 B (@i + Biad) oy’ =0;
clearly the roots are related as follows
Bis(e+ +0-)+a35(0.+0_)=0
0305 —0+0s =2(360, + P3605) = 36(01 —03) + Bas(0x —0:)-
The independent terms of R and S do not vanish, by assumption and upon using the

remark at the end of Lemma 3 and the inequalities of Table 1, the discriminants of
R and S have the form

403B5 (3033~ Pieipi) and  —4ped(e3aipl— B3aipd)
and do not vanish, since ¥ is non-singular (by virtue of the last statement in
Lemma 3). Hence we have the inequalities

2+0-*0 o,0_%0 0. —0-%0 o.—0_%*0
2(a360, + P360:)=0505— 0,0, ¥0;
the latter inequality holds because, in view of (4)
a3p3
oz B3
again by the hypothesis and by the fact that € is non-singular.
Proving the existence of three distinct points p,,p,,p; €% satisfying (3)

amounts to finding p,,p,,p;€¥ (i.e., satisfying H,(p,) = H;(p,)=H;(p;) =0,
i=1,2,3) such that

P e y T e y — e . 6
D=7t 0), P0)= 200 JSe0=200 O

4

)

(a5 05 B35 — B5oa B2) (g B + Boord) + 0,

“%6 (O'i _o'q:)z —ﬁ%G(Qt - Q:;:)2 =

In terms of the coordinates (X, Y;, Z;, 1) of p, € IP3, the relations (6) amount to a
linear system of equations in X; and Y;, with coefficients depending on Z;

Xy o3 B3 (23 B ~ a6 B3) (Z1 — Z,) )
DX, = 0
[ X3 | 0 )
; @)
Y, s B (%386 — %6 B3) (Z, — Z,)
DIV { = ﬂ§(23—-21) s
| Y, “i(zz"za)
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where
—(036Z2+ B36) %36Z1+P36 O
p=|-2z, 0 Z,
0 -1 1
with
A=det(D)=Z3(036Z; + B3¢) — Z, (0136 Z2 + B3s)- 3

By formally substituting X; and Y; in terms of Z; obtained from (7), the equation
H,(p,) — H;(p;) is automatically satisfied for i=1 and leads to an equation
for i=2:
Hy(py) — Hy(p3) =47 03(Z3— Z,)? [Z5(036 Z1 + Bss) + Z1 (236 Z5 + B36)]=0;
upon setting

Z3(036Z1 + B3e) + Z1 (236 Z, + B36) =0, &)

we get the following relations, involving the polynomials R and S introduced in the
beginning of the proof

Hl(p3)=ﬁ§A‘ZZ§(Zz—Zl)2R(M—‘—J’—Bﬁ>=o (10)
Z,— 7,
and
27
Hz(p3)=aiA—ZZ§<zz—zl>ZS( 3(““21”“>=0. (1)
Z,— 7,

The remaining relations

Hy(p))=H,(p)=H,(p))=H;(p,)=0
are then automatically satisfied, because upon eliminating X, Y;, Z,, we have
- t36Z; + Bis |2
H — H d 3642 36 H =H R
1(p1) 1(p2) an <“m3623+536 2(P1) 2(p2)

For the points p; to be all distinct with a; ;3 # 0, and in order to solve the linear

system (7), we must impose the inequalities

4%0,(Z,~Z)(Z,—Z)(Z3—Z,)*0, Z,£0 and ay5Z;+f36+0 i=1,2,3.
(12)

The problem now reduces to finding three points p,, p,, p; satisfying the relations

(7, 9), (10), (11) and the inequalities (12).

In view of the discussion about the polynomials R and S at the start of this
proof, the expressions

2
M:‘-Qi*o and Z,0,=o0, %0, 13)
Z,-2, -
with the relation
Z3(036Z 1+ Bas) = —Z (%36 Z; + B36)> (14)

provide a solution to (9), (10), and (11), and in turn

[ (F
Z =.;’ Z = —, Z =
1 2: 2 0, 3

QIQ

+

(15)
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provides the solution to (13) and (14) upon using the relations (4). The inequalities
(5) imply at once that the Z;(i =1, 2, 3) are non zero and all distinct. Then (13) and
(14) imply o34 Z;+ B3 0 for i=1, 2 and (5) implies that inequality for i=3.
Therefore also in view of (8) and (14), we have 4 & 0. As a result the systems (7)
have a unique solution X, X,, X3, ¥;, ¥;, Y;. Thus the coordinates of the 3
distinct points p;,p,,p; €€ have the required properties, ending the proof of
Lemma 4.

Theorem 5. Let the elliptic curve € be non-singular, then after an appropriate change

of coordinates xmz, the space V can be spanned by a ‘‘simultaneously
diagonalizable’ basis

A o222 P)
O=z+n-253-07%
A _ 2, .2 .2 2
Qr=125+125— 21 — %5
A 2.2 .2 2
Os=zg+z1— 23— €32

Q.=az,z,+ bzyzs+ c2324 — 425, with a*+b>+c2=0, abe=1,

(16)

depending on four parameters a, ¢, , ¢, and ¢5; ¢4 can be made 1. The curve € of rank 4
quadrics has, with regard to this basis, the following form

€ —a*ZQ,+ B Z+ D)0, +Z(B*Z+cH)Q,—2W0,

W 2 - 2
= —(7_2—21+a Zz4) + (b]/Z(l—Z)zz—]/_Z_%%)

+(c1/1—2z3—

where
W =Z(1-2Z)(b*Z+c?)
and where
c(Z,Wy= —a?Zc; + (P Z+ ey + Z(B*Z+ ey —2We,
is a meromorphic function on €. Moreover € contains four collinear points

p.(1 £a £ 4) corresponding to four rank 3 quadrics Q(p,) (i.e., with z2 missing)
having the property

0(p,)=0.

HMh

The affine intersection I = N {Q, =0, z, = 1} supports two commuting vector fields

X;: 2z, =azszg X,: z,=az,z,
Z,=bzgz, Zy=1CZ4Z¢+ 02,24
Zy= 02425 Zy= —bzyz5+az,z,
Za= —bzyzg+ cz32s Zy= —CZyz5— bzy24
Zs= —CZ3Z4 4 Az Zg Zs=bzyz,

Zg= —az,zs+bz,z, Z=CZy 2,
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The quadrics Q; in (16) provide the set of invariants for the geodesic flow X, given by
(4.2); in the left-invariant metric H the A, and A, ;. 5 satisfy (see [4,5])

Ajg=Ays=A36  and A Az 4+ A3sA;5+ A6 Ay + A3y Ag3 45, =0.
(Manakov metric) . (18)

Proof. We first assume o B2 + B2 = 0; then, at any point on ¢ and in particular
at the points p, , p,, p; € ¢ found in Lemma 4, the relations a;a; , ; = a?; , ; hold and
hence the corresponding three quadrics Q(p,), O(p,) and Q(p;) have the form

3 a 2

_ ii+3

=Y a{x+x,,
i=1 a

i

with a; and g, ,  evaluated at p,,p, and p,. Observe that, from Lemma 4,
a a a a a
7 P=2 )20, =0+ ~(p2)
a a a
-2 1)= 22 (Pz) 4: 28 (P3)

the inequalities holding because otherwise the meromorphic functions q; ;,3/a;
would have at least order 3 which has been ruled out by Lemma 3. Also the g; are
nonzero at p;, p,, ps, since there a;a; . 3 = a?,, ; # 0. Therefore it follows, at once,
that the linear map y= Lx

a1 () aya(py)ay(ps) ™" 0 0 0 0 |
a; (P awy)a; ()71 0 0 0 0
L= 0 0 a(P)? as(p)a(p) ™ 0 0
0 0 @ ()" ays(pr)ay(pa) ™12 0 0 ’
0 0 0 0 a3 (P2)'? ase(pr)as(py) '
0 0 0 0 a3 (p3)'"?  ase(ps)as(ps) ™'

maps Q(p,), Q(p;), Q(p3) into

Q(p)=yi+yi+as(p)ay(p) ' Yi=yi+ys +as}
Q(p)=yi+yi+a;(p)a;(p3) ' yi=yi+yi+aiy} (19)
Q(P)=Ys+¥i+a,(p3)ay (py) ' yi=ys+yi+ay¥3,  with a#0.
~ Carrying out the program of Lemma 4 and implementing the linear map L,
yields the basis of (16) in terms of the basis NF1: Q;(x) — ¢;x3,i=1,..., 4. Indeed

the change of coordinates x ~ z and the values of @, b, ¢, ¢;, ¢,, ¢34, ¢, are specified
below:

Zi=l/(7ir(xi+bi+xi+3)a Zi+3=l/‘?(xi+bi~xi+3)s i=1,2,3,
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with
al = 0336+ Ps6) + U, a3 = —P5(aze+Pas)+V, a7 =—p3U—-a3V,
a; = —a;(=U), a; =a;(-V), ay =a;(-U,V)
b} a = By(—036 + U), by a; =as(—Pss+ V), by ay = —oa36V — B3 U
U=iE—3-W, V=&W, = —oipiaf+aiBip3
Bs 7
and
a=ia4ﬂ4ﬂ§, b= _asﬁsdg, c= W,
c;=c(-UYV), c;=c(U, -V), cy=—c(U, V)
with
c(U, V)= (5036 — 03 B3g) i + (—BEU+ 0V + BLatze — 4G Bas) Ch
+(Bse — V)3 — (036 — U)ca,
and
o = a3 B3 o Bs 3@+ a2 — B3 — B3 (@3 B3¢t — 36836 Ch)
4= "3 2
(o3 B36 — B3 236) Y B ¢
3rse 3736 +(“iﬁ36+ﬁ§°‘36) ;53:2;—6 3_’532'6‘

Therefore assuming o 87 + fZal+0, we have shown the existence of three
independent quadrics of the general form (16).

Next assume a2 B2 + fZaZ = 0; this relation combined with Eq. (2) of Table 1
enables one to express a2 and f2 and hence a? and BZ as rational functions of
a2, a2, B%, B%; it also implies that the right hand side of 10. (Table 1) vanishes,
leading to two cases:

(i) a3B¢— %6 f; = 0; squaring this expression and using 3. of Table 1 and the
expressions for af and p2 (alluded to above) imply B2+ B2 — af — a2 =0. Upon
substituting these expressions into the basis NF1 of V, we find

2
Q3 =i xi+ (X +osx5) + 5= o2 Bz (xa + ]/oz§ — B3 xe> ;
upon dualizing Q; and upon using B3 + 2 — of —aZ =0, we get

2
Q4= (x; + Paxy)® + f3x% — 'B —— | X3+ 1/“5 B%xs) ;
- Bs
consider also

3P0, — P05 — 05 Qs = —af(x; + Baxy)? — B3 (X + s x5)* + aff3x2.

The two first quadrics have the x5, x piece in common, the first and third the x,, x5
piece and the second and third the x,, x, piece. Thus, after some minor rescaling
they have the form of the three quadrics (19).
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(i) a2 (o3 Bs — g Bs) + a2 (a3 B+ agfs) = 0; this equation and identities 1.,
3. and 4. of Table1 imply («Z + a2) (B —B2)* — (B2 + B2) (a2 —a2)* = 0. Upon
renaming x; = X;, 3 and x{, ;= x; and upon taking into account the inequalities
o2 — a2 +0 and B2 — B2 +0, one checks that

03=(3-0) ' [Qs+of(ad—ad) ' Q; — 43 Q)]
= o X + (o + a5 x5)* + (@ x5 + a5 x6)?;
and by dualizing,
Q= (x) + Baxi)? + Bs x5 + (B3x3 + i xe).

In the expressions above,

2 2002 2y-2 2 _ 2
oy =az(as—ag) ™%, oy =o3,

a@ == a = e -ad)
with dual expressions for the B in terms of the B;,. Observe now that the ]
and B; satisfy the relations of Table1 (Case 2), besides ajfig —oagf; =0 and
24+ B3 —af —a? =0. This is to say that case (ii) brings us back to case ().

Having shown that, in all circumstances, the elliptic curve % possesses three
points corresponding to three independent quadrics of the form (19), there exists a
fourth quadric Q (all together spanning ¥) of the following form, after knocking off
¥i, y3 and y§ with Q(p,), Q(p,) and Q(ps):

Q=dyl+d,y5+ d3y§ +2(b1y1 Y4 +b2y2Ys +b3y3¥6).

Of course, the span V=V (Q(p,), O(p,), Q(p3), Q) must still contain the same
non-degenérate elliptic curve €. Then expressing the linear dependence of the three
cones H; =0 (with regard to the coordinates of the basis just mentioned), yields

d=d,=dy=0, ajayay+1=0 and bla;—bjaja,—bi=0

with all &;, 4] + 0. Using the rescaled variables z; defined by

(y1,y4,y2,y5,y3,y6)=(21, Vallaéz4! Va,lag ZZ’ l/_all 259 V_a; 23526)

leads at once to the four quadrics (16). With this notation, one easily checks that the
curve of rank4 quadrics has the form (17). It contains exactly 4 points
corresponding to rank 3 quadrics; this happens whenever ¢(Z, W) =0, i.e., at the
four intersection points p, = (X,, ..., U,), 1 S« <4 of the hyperplane

ap=c; X+, Y+c3Z+c,U=0
with the elliptic curve . Thus <{c,p,> =0 for a=1,..., 4 and as a result the four
points p, lie in a hyperplane, i.e., ) 4,p, =0 for some 4, € €. Then we have that
4 4
ZAaQ(pa) = Z'la(Xan + Y;QZ + ZuQ3 + UaQ4)
1 1

4 4
= (Z'laXa) _Q—l +...+ (Zz‘a Um) Q4
1 1
=0.
Absorbing 4, into Q(p,) leads to the announced result.



56 M. Adler and P.van Moerbeke
Consider the geodesic flow mentioned in the statement of this theorem. Then
perform the coordinate change x ™ (X};); <, ;<4 €50(4) defined by
Xij=%(xk+xk+3)’ Xi4=%('xi-x4),

where the (i, j, k) are the cyclic permutations of (1,2, 3). In these new variables, the
geodesic flow becomes

. oH
Xy Xz[X’E:Y_} Xeso(4)
for the metric
HXuf)= ¥ (ﬂ B)
15i<jsa \%i &

this form being a consequence of the relations (18) on the metric. Observe that
whatever be the values of the §;, the quadrics H (X, a, f) are invariants of the same
flow. In particular, taking limits for 8,1 oo, we find that the invariants of the flow
above are given by the quadrics

Q:;=1lim HX,a,)(1£i<3) and Q,= }/determinant(X),
Bt o
which upon an obvious rescaling leads to the quadrics (16). The vector fields X, and
X, are Hamiltonian flows X, above for H=Q,+Q0,+Q; and H=Q,
respectively; thus they commute. This ends the proof of Theorem 5.
Theorem 6. Consider the elliptic curve € of rank 4 quadrics, as before. Then after an

appropriate change of coordinates x ™ y, an alternative basis for V has the following
form

3
Q’z=22 ViViva

(byl +b 1y;+3

’
4

2
2 Ji YiVi+s 2 Vs K22
(L gt H Kb Ty K b4) Yor

with parameters b, b,, by, b, = b, b, by and K|L; notice y, = z, does not appear in
Q.(1 £i£3), but only in (,,. The b; are all distinct and different from 0 and 1. With
regard to this basis, the elliptic curve € is a double cover of the X-plane ramified at the
4 points linearly equivalent to

bK b, L , )

B;—L_Jr_b—_K; 1_172:354’
and the 4 collinear rank 3 quadrics (alluded to in Theorem 5) on € are given by

0,+ 0, and Q3+0;.
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The affinevariety I = N {Q; = 0, y, = 1} supports two commuting vector fields X, and

X, given by
{ Y1 ] LesVeVs A3Y3Vs —A2¥2Y6 |
V2 Aa6YaVe MY1Y6 —A3Y3Va
V3 —-K AsaYsVa _f’_ A2Y2Ya— A1 Y1Ys
Va AeY2Ye — AsYV3Vs by | A32¥3¥2
Vs AsY3Ya— A6¥1V6 A13)1V3
L Vs { AsV1Ys = A4V2Va J L A1 ¥2)4
and
Y1) [ A65Y37, A3Y3Ys —A3Y2 Y6 |
V2 AsY3V1 = A4VaYs 4311V
V3 A4YaYs — Ae¥2 1 L | Ai3ysy:
Sl =K , ) —_— , ,
Ya A6Y2¥s — A5Y3Vs by | A32Y6¥s
Vs A54Ya¥3 A3Y4Y6 — A1Y3)1
| Ve | A46V2V4 { A Y2Y1 — A3Yays

where A;=A4;— A; and A= A; — A, with

1 , 1 1 , 1
A’i_b;-l___bi—l’ lli_b:‘__l—bg-l’ /li+3_b4__bia A‘i+3_b:‘_b$

and (bllsb,2s ,39b:1-)= (b4sb2’b35b1)'

Proof. From Theorem 5, there are four collinear points p, on % such that
3
0,)= kZ (@;(Pa) 2+ 8 4 3(P) 2 4.3)*
=1

with Y Q(p,) =0. For each k, define y,, ¥, 3, by, by, dy, and d, such that

V= Virs =& (P1) 2+ @y 3(P1) Zis 3

IVt Vira) =a(P2) 2+ @ 3(P2) Zi v s

byt biyirs=a(p3) zi+ @ 3(P3) Zk+ 3
Ayt dirs) = a(Pa) Ze+ Gy 3(Pa) Ziy 3,

which can always be done for a generic choice of constants c;, appearing in (16).
Expressing the fact that ) Q(p,) =0 yields, for every 1 Sk <3,

D= Y43 = Gt Vi) + O+ by 3) — @+ di e 5)* =0

leading to
=di, b2=d?,

byb,—dd, =2,
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implying by = b; ', d, = b,, d;, = — b, ! . Hence the 4 collinear quadrics take on the
form

3 3
Q(P1)==k;1 Ve Y+ Q(Pz)= “kgl it Yira)

3 3
Q(P3) = k§1 by + by "Vers) Q(P4) = - kz,l (biyi— b s 3)2 .

For a generic choice of ¢;, we have that all b, % 0, + 1, distinct and different from
b, =b,b,b,. Taking appropriate linear combinations of the above quadrics leads
to the first three quadrics Q! (i= 1,2, 3) of Theorem 6.

In order to complete the basis of ¥ of Theorem 6, we need to find a fourth
quadric QY, which (without loss of generality) has the form

3
Qu= Z(diyiz +2di,i+3yiyi,i+3 + di2+3yi2+3) - cy%.
p)

Expressing the fact that ¥ contains an (elliptic) curve ¢ of rank 4 quadrics, i.e., that
the polynomials H;(X, Y, Z, U) are linearly dependent, we find after some row
operations that

rank b,+b;'—b,—b! d,+ds dsb,+d,b;'  dys dyds—dis _q
b3+b3_1—b1—b1_1 d3+d6 dGba'*‘dabs—1 dsa d3d6_d§6

Comparing the columns with the first one, leads to expressions for d,, ds, d%5, and
dZ¢ in terms of d; and d,. Letting

K2 =b,b,bs(dsbs (b, —b))+d3(b15,—1)) and L?=dsby(b,b,—1)+d3(b,—b)),

solving these expressions for dy and dj in terms of K2, L?, and b;, and putting them
into the formulas for d,, ds, d25, and dZ lead to

Q/___ L2 K2 2+ LZ K2 )

*=\b;T=b;T Thy—b, ) T \BTh; Th,—5,)
by(by—b1h)

By —by) (ba—by) 72"

N AL S VPO G _K2)2
by i—b;% b5, ) T \br b, b,—b,)°"
by(b, —b7Y) ,

(b, —b,) (by —by) 73Vs 770"

+2KL

+2KL

Since the quadrics Q;, Q,, and Q} are invariant under cyclic permutation
VIOV, ONY3 Y1, YN Ys v ye vy, and by ~ b, by~ by, the space Vspanned
by the Q; contains besides 0, two other quadrics, obtained by cyclically permuting
the indices. Then summing up these three quadrics leads to the quadric Q
announced in Theorem 6, while the rest of the statement follows from a
straightforward but lengthy computation, ending the proof of Theorem 6.



Intersection of Four Quadrics in IP®, Abelian Surfaces and their Moduli 59

6. Intersection of Quadrics, Abelian Surfaces, their Moduli and Geodesic Flow on
SO (4) for Left-Invariant Metrics

The punch line of this paper is Theorem 7, which we state and prove in this section.

Theorem 7. The moduli for the intersection of four quadrics having the form

Z('ylx +})z+3x:+3+2'),1 x+3x1x1+3) =0$

satisfying conditions C0, C1, and C2 and having a non-degenerate curve of rank 4
quadrics in their linear span breaks up into two pieces: the moduli of abelian surfaces of
principal polarization and polarization (1, 2). The affine intersection I of the quadrics
can be completed into an abelian surface A by adjoining to I a divisor D, which can be
viewed as an 8-fold cover of € in two different ways, as indicated in Fig. 3. The
representation of € as a curve of rank 4 quadrics is obtained by substituting the
quadrics Q; of Theorems 4 and 5 for c; in the expressions ¢ (Z, W). The moduli for each
of the cases are given in terms of the quadrics Q, in Theorems 4 and 6, as follows:

Case 1 Case2

hyperelliptic Jacobians Prym variety A = Prym(D/€) (polarization (2,4))
A=Jac(D)

moduli: ¢ /cy, cy/cq, C3/cy| moduli by, b,, by

D: Ut=c(2) D: {6, U*=c(Z, W)}
(D132 8-fold unramified® cover of #
H: V2 =Z(Z~b(Z—b)(Z—b3)(Z~ b, b,bs)
Jac () is a double unramified cover of A.

Proof. According to Theorem 1, the curve &= &' is a four-fold cover of &; it is
unramified, because zZ/z% and z3/z3 have a divisor on % divisible by 2; the latter
follows from expressing (2.1) in terms of the curves of rank 4 quadrics appearing in
Theorems 4 and 5. Also from Theorem 1, I has a normal crossing along & which
upon normalization turns & into the curve D = {6,U 2=¢(Z, WH}.

Incasel,IN{zy=0}= &+ &°, &= 4lines C, and &° = 4 lines C,, where &and
& intersect according to Fig. 4. The surface T has a normal crossing along & and is
smooth along &°. Blowing up I along & and blowing it down along &° lead to the
desired abelian surface with a divisor D, consisting of 4 isomorphic hyperelliptic
curves. In Case 2, I must be blown up along &= 71 {x, =0} to yield an abelian
surface carrying a smooth curve of genus 16,

The proof of these statements is based on arguments in [5], which we
now summarize. The set of quadrics in Theorems 4 and 5 supports the two
commuting vector fields X; and X,. Then X; admits a family of Laurent
solutions z(¢) =t~ (z® + 2z ¢ 4 ...) with simple pole, parametrized by D. After
reduction by the invariants and upon substituting the Laurent solutions, the space

* [D] denotes the linear system of J
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Case I
4 hyperelhptlc curves

$54=Jac(D)>D = { intersecting in 4 ordmary , gD)=17,
trlple points
ramified 2-1 unramified
&= {4 lines} ¢ _ hypereltiptic

0|0

¢ ¢ ¢ curve
—c(Zy= S _ _© (21
‘@O=z1"za2tz"
unramified \ 4- ramified at the 6 points
where U= 0 and oo

& = {line: W=2Z}

Case 2
P” 54 = Prym(D/€) oD b smooth, Dy=9
oD — ) ] =
R4 X'=1-Z Y =Z( - &
ramified unramified
over 16
points
e= €
X*=1-Z,Y*= = U =c(Z, W)= -a*Zc, + (B2 Z+ P c, +
+Z(B*Z+ Y ey~ 2We,
unramified 4— ramified at

the 4 points U=0

=Z(1-Z)(B*Z+c?)
Fig. 3



Intersection of Four Quadrics in IP®, Abelian Surfaces and their Moduli 61

¢
21 A
Y g
- Cye-1,1)

Cqi(1,1)

Ci(1-1)

C1(-1,-1)

Fig. 4

of polynomials in z,,..., z, having a simple pole is spanned by 16 functions 1,
Zyy...5 2, .+.5 2150 Case 1 and the 8 functions 1,z,, ..., zgand z, = bz, z, —az, z;
in Case 2. These functions and their residues at 1 = 0 map the affine surface 7and the
divisor D smoothly into IPY, where N= 15and 7, respectively. One then shows, with
effort, that the trajectories of the vector field X, issuing from D form a smooth
surface strip around D; this procedure is used to glue the curve D onto the affine
surface I, yielding a smooth surface 4 embedded into IPY. The complex Arnold-
Liouville theorem and the existence of two commuting vector fields imply that 4isa
complex torus carrying the divisor D. The functions 1, z,, ..., zy defined above
generate L (D), in addition to embedding A into IPY. Hence by Chow’s theorem, 4 is
an Abelian surface with very ample divisor D. Its period matrix can always be given

by 5
1 0 a ¢ a c
(0 5, ¢ b)’ Im<c b>>0, 0,€Z, 6,0,

with 5,8, =g(D)— 1 = N+1, leaving only a few possibilities for (3,,,). Then
(d;,0,)=(4,4) in Case1, and = (2,4) in Case 2, by counting the even sections
(0-functions) of the line bundle associated with D.

Since, in case 1, A contains a divisor D, consisting of 4 isomorphic hyperelliptic
curves D, we have that A = Jac(D). To see that in Case 2, 4 = Prym (D/%), we use
the flows X, and X, of Theorem 5, and the differentials dz, and dt, defined on 4 by
d1,(X;) = 6,;; dt, and dr, restricted to the divisor D turn out to be odd holomorphic
differentials w, and w, on the curve D. To actually obtain these differentials, we
pick two coordinates z, and z,, viewed on A as functions of ¢, and ¢,.
Differentiating 1/z, and zp/z, with regard to the vector fields X, and X, yields

1 | 1
) |46 )] (-
V4 V4
X, (}E> X, (z—”) dr,
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Then substituting the Laurent solutions in the above and evaluating the result at
t =0, we obtain the two holomorphic differentials w, and w,. The oddness of v,
and the decomposition

Jac(D) = Prym(D/€) D €
imply that 4 isisogenous to Prym (D/#). A more careful analysis involving cycles of
D shows A = Prym (D/¥); see Haine {10].

With regard to Case 2, we now prove that the linear system [D] contains an
8-fold unramified cover of the hyperelliptic curve # given in the statement of this
theorem. To do this, consider the quadrics Q] of Theorem 6 expressed in the
coordinates y. Inspired by Kotter [14,15], we consider the following function

yl+3
f= be4

in L(2D); notice this expression appears explicitly in the quadric Q). We now show
(f)= —2D+ 2 (8-fold unramified cover of #).
Consider the curve

Do = (W{Qi(n) =0} n{f=0}. M

HD-F

The following expressions

b 14
3=ZYX—-b, |2 =it 2
Vina=ZVX-b \/(p(bi) n=y P(X-b)(X—b) VX @

provide a solution of the equations defining D, in which

2 y_
Zi=c¢"1 (—LIS> X Xb4 , (c rational function of b;)
(3)

(p(u)=ﬁ(u—b,~) and V2=Xf1(X—bi).

The main tool here is Jacobi’s wonderful device, which consists of evaluating the

contour integral
i Rw)

® )

du, R rational
around a small circle about u= oo. In this way, one verifies that

6 3 YiVits _
Yi=2Z% Yyi=—2Z% Yyyis= Z" 0,
> ) 1 b—b,

3 2 2
Yivsa _ Yi _ . XZ 2 ne1.2 N
Zbi—b,‘-_()’ ?b;l—bi_l_cX—b,,’ ;(biyi_’.bi Yiv3)=0,

showing that (2) is a solution of (1) and thus parametrizes a connected component
D of Dy.
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Using (2), we show that Dy is equivalent to the curve D{:

———
y4)’5y6=8\/X1—[(X~bi):9f
1
1
Dy YaVsYe

(V1Y4:V2Y5,V3¥6) =0 VX

A

and
yays=k)(X—b))(X—b,)
VsV =AYV (X —by) (X —bs)

where all equalities are valid up to multiplication by rational functions of X and
where ¢, 0, k, and 1 take on + 1 independently of each other. Indeed, a point on
Dg, given by (X, ¢, 9, k, 4) specifies a unique point (y,,...,¥s) in Dy as is seen
from taking appropriate ratios of the formulas defining D; and conversely
given (y,,..., y¢) on the curve D}, we recover uniquely Z?2, X, ¢, 4, x, and A from
6

Y y}=Z?, (3) and the formulas in D§. Hence D, = D{ and D,, contains a curve D},
4

which can be viewed as an 8-fold unramified cover of the genus 2 hyperelliptic curve
#; thus the curve D has genus 9. The various sign flips associated with ¢, J, k, and 4
correspond to involutions on the curve D as summarized in the figure below.

Genus Involutions
9 Dy

S unram. 4 Ay —A:1(Py, Y4, Y2, Y5, Y35 Y6) N (— V15 —Var = Y2, = V5, V3, Ve)
‘#2

3 unram. | kK~ —‘K:(y1>y4sy27y5:y3:y6)m(ylsy4’ —Y2, = Vs, V3 _y6)
H

1
s unram. 4 0 —0:(yy, V2, V3, Var V5o Y6) N (= Pis = V2, = V35 Yar Vs» Ve)
H

ram. I gn "'8:())1,))2,y3,}’4,y5,y6)ﬂ(y1,y2,y3, —Ya> — Vs> _y6)
C

Fig. 5

To establish Dy =Dj and (f)= —2D +2D,, we use the flows X, and X, of
Theorem 6 and we first show that df/dt; =0 for i =1,2; indeed, one checks that

of L I:J’4 Js Ye ]
= = - = Aghgy =T Agh s Agh
EPS o b4)’1)’2}’3 I at32 I 5413 s 6421 o,
__L (X—b,) VX
= ‘b‘;yu’z}’a 2, v

[(X—=b1)Ag A3+ (X —by)AsAy3+ (X —b3) A6y, ], using (2)
0,

n
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while
o __odn
0ty |p, Oty dty |p,

showing that D isa double zero of f. Thus (f) = 2Dy — 2D, with g(D) = g(Dy) =9,
and hence f must have a double pole along D, establishing (/)= 2D, — 2D; thus
taking the square root of f shows that D, is in the linear system of D.

Finally we show that 4 is isogeneous to Jac (5#). It suffices to show, in view of
Theorem 4 of [5], that the holomorphic differentials w, = dt;|,, depend on 5 only
and thus descend to the hyperelliptic differentials. Taking the differentials of two
independent functions F and G defined on 4, we find

s

oG oF
dt, 1 o, o | |
(dfz)z(éi?_fi_?_iéﬁ> BLLL N
ot 0t, 0Ot 0ty oty oty

Setting F=y,ysys and G=y, v, y,, observe that 0 F/0¢; and 0 G/0t; are functions of
¥;¥j+3and yj2 only, and therefore F, G, d F/0t; and 0G/0¢; are invariant under the 4
and x involution of figure 5. Consequently the same holds for w; =d; |, (i=1,2).
Therefore not only are w,; and w, holomorphic differentials on D, but also
holomorphic on J#, (see Fig. 5). Then by Theorem 4 of [5], we have

A < Jac(H#,) =Jac(#) @ Elliptic curve, modulo isogenies

and since 4 is irreducible, 4 = Jac(H#), moduls isogenies. Moreover Jac () is a
double cover of the abelian surface 4, as follows from the arguments in Horozov-
van Moerbeke [25] and Adler-van Moerbeke [23]. Hence b,, b,, and b5 form a set
of moduli for A4, concluding the proof of Theorem 7.

Remark. An exact computation shows that

X—b,)dx X—b,)dX
w, =dt, |D0=£‘—1)7 w2=dtzlpo=(“”"’£)—~

vV Vv

This shows that the flows X and X, are both doubly tangent to D, at the 8 points
covering X = b, and X = b, respectively.

Corollary. The Abelian surfaces A of polarization (2,4) are completely defined by the
intersection of the 6 quadrics in P’

222 2
1=Za+23— 23— €1 %5

Q1

2 2 2 2
2 =I5+ 23— 21— €25

I

2, .2 .2 2
3= Zg+2Z1 — 23— 032,

i

a b ¢ 2
=— 2124+ — 2525 +— zZ3Z¢ — 24
Cy Cy Ca

s=—bz,z,+az,z5+ 242,

o

2
6= —C2(c12f + €223 + €323) — c4(@zy 2, + bz, 25 — c2326) — 23
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or equivalently by the following 6 quadrics, the summation running from I to 3:
01 =Y (ni+yi+3)?
Qﬁz = Z(J’i T
05’ = Z (biyit b 1 yiss)
2
aYi y;'
Q.=Y BT BT y3

A5 YiYivs Vils
QS_Zb-—b4 b,

2Y} yl
Qs_zb +24 “ys’ by="b,b,b;,

where by, b,, b € C* form a set of moduli for A. Moreover

Jac{y? = x(x— b;) (x — by) (x — b3) (x — by)}
is a double unramified cover of A.

Proof. In the proof of Theorem 7, it was observed that L (D) = {zg=1,2¢,..., 26,
7, =bz,z, — az,z5} smoothly embeds A4 into P7, and it is easy to check (as first
observed by Haine [10]) that this smooth embeddmg is given by augmenting the
relations of the embeddmg in IP® (5.16) by the definition of z,, to wit Qs =0, and
one relation involving z%, namely Qg = 0; this leads to the first basis. Moreover, the

locus of rank 4 quadrics in the span XQ, + ... + W is given by the intersection of
the four quadratic cones

K= {Plaiaws “aiz,i+3 =0}7 K,= {Plaoa7 “43,7 =0}, i=1,2,3,

2
U— bV —ac, ):0}

2
={4(X——Z-—c2c2 W)Y — <§U+aV-bc4W) =0}
4

2
K ={4(Y——X—c2c3 W)Z— (-cc— U+ cc4W> =0}
4

K4={4(C1X+C2Y+C3Z+ U)W - V2=0}

having the explicit form:

K, = {4(2— Y—cte, W)X — (

QIQ

By inspection (using a* + b* + ¢2=0) we have K, + K, + K, + ¢*K, =0, and
4

therefore K = () K, defines a surface. The hyperplane section with K
1

Kn{i?(c; X+ c, Y+, Z+U)—k* W}
zKanzm{ch+C2Y+C3Z+U= K2, V=2K11, Wzlz}
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is seen, after eliminating first U, V, W and then Z, to be an elliptic curve; the latter
can be viewed as a curve of rank 3 quadrics in the affine linear span

Q1 =¢104, Q2—¢,04, 03— €304, Q=0 +2KkA0s + A2 Q5.

According to Theorem 6, the above basis may be replaced, after a block preserving
change of variables, by a basis of the form:

01,0303, O =170, +2KLb, Qs + L* 05,

for an appropriate choice of Kand L. To show that the linear spans of the two sets
of 6 affine quadrics given in the corollary match, we observe that the quadrics @,
Q%, Q5 "arein the span of @, —¢; Q,, @, — ¢, @4, Q5 — c5 04, and the rest of the
argument proceeds by picking three distinct values of K/L. Thus the bases
Q,...,Q¢and Q},..., Qi have the same span, and we conclude by the preceding
arguments that the basis Q,,..., O, can be replaced, after a block preserving
change of coordinates, by the basis 0}, 05, 05, Qs — 4. (2o, 27), 0% — 5(24, 24),
Q¢ — 46(20, 27), Where g;(zq,2,) = ;25 + b;25 + 2¢;24 2. It was shown in Theo-
rem 7 that the divisor (Qg) has the structure (Q¢) =2D,— 2D, from which it
follows that g (z,, z;) is a perfect square (ez, + fz,)? = y2, and by symmetry, so is
44 (2, 2,) = y%. Since the span XQ', + ... + WQ¢ must support a surface of rank 4
quadrics defined by 4 linearly dependent quadratic cones, we immediately find that
qs(z¢,2z7) = * ¥, yg/bs4, concluding the proof of the corollary.

Remark: Since the four quadrics 0}, 05, 05 , 05 satisfy 0} — 05, =07 — 05 , we
may take any pair of them to be the first two quadrics, and the other pair to be the
latter two quadrics. Recomputing the new basis of 6 quadrics, involves a linear
change of coordinates and a fractional linear change of the 1/3;5. There are clearly
3 essential choices of such bases, resulting all together in 6 sections corresponding to
7 =0o0r yg = 0; they define 8—1 unramified covers of 6 hyperelliptic genus 2 curves,
coming in 3 distinct pairs. All the above is computable in a linear fashion. This has
been observed by L. Haine.

7. The Degenerate Curve of Rank 4 Quadrics and K3 Surfaces

In this section, we deal with the possibility excluded earlier, where the curve of
rank 4 quadrics ¥ < V ~ IP? contains a degenerate component.

Theorem 8. The situation where € < V contains a degenerate component, which is not
a line, breaks up generically into two cases for which we provide a canonical basis in
some appropriate coordinates; namely V has a basis containing, besides a generic
quadric Q, of the usual block form, the following three quadrics:

=Y =y =Y 2

case(A): Q,=x3+x3+x3,Q,=x3+xi+x% and Q;=x X4+ X;Xs+X3x6— X5
B): N o 2 2 2 A 2 2 2 d I} 2_ 2
case(B): Q, =xi+x5+x5,Q,=x3+x5+x; and Qy=X,X,+X,X5+a3x35— Xo,

where Q, and Q, do not contain any x% term.
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Then in case (A) (case(B) being analogous), the affine intersection I of the
quadrics can be completedinto a K3 surface A by adjoining to I a divisor D, which is an
8-fold cover of € in two different ways, as indicated in Fig. 6. An appropriate rescaling
leads to

Qa= (X3 + X3 +20,5%,X5) + (@3 X + 02 XZ + 20036 X3 X6) — €4 X5
and in this basis € is a rational curve:

3
€ 2’0, +0,-220,= Z(in_xi+3)2 —22Zx3.
1

The surface I experiences a 2-fold normal crossing along &' (= &) with eight pinch
points occuring at Z=0 or oo; moreover & can be given by

€ W=2

&=
x2 x2 x3

P (2) P,(2) Py(2)

with
P =—P,—P,, P Zy=a3+4+02Z% 42034 Z, Py(ZD)=—-1-2Z%-20,5Z.

Upon normalizing I along &, the curve & turns into the curve D = {&,U*=Z} of genus
9 (see Fig. 6).

A->D={&, U*=2}, gD)=9

ramified at 8 points

given by Z=0 and co. 4-1 ramified
g(&)=3 ¢ D={U*=2Z}
ramified at 12 points 4-1 2-1 ramified at the 2 points

given by P,(Z)=0,
k=1,2,3

given by Z=0 and «©
¢={W=2}

Fig. 6

Proof. According to the Lemma in Appendix1, ¥ contains the announced
canonical basis @, , 0,, O, and one other (generic) quadric Q,; after appropriately
subtracting a linear combination of Q,, Q,, and @, and after rescaling x,, x5, and
Xg simultaneously, Q, can be taken to have the form given above.

One then computes & by applying Theorem 1, with Q, replaced by @, and one
checks by direct calculation that &' = &. The statements concerning the normal
crossing, pinch points and the formula for D follows from Theorem 1, with
¢(p)=2Z. All this taken together and the Riemann-Hurwitz formula yield Fig. 6.
It is interesting to point out that the roots of P,(Z)=0, k=1,2,3, discussed in
Fig. 6, coincide with the points where K; N K; intersect €.
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Fig. 7

It will now be shown that the smooth surface A = I obtained by separating the
two sheets of Tat £isa K3 surface. Let & = D be the curve on T obtained by blowing
up &. From the Enriques classification of surfaces it suffices to prove that: (i) the
canonical divisor is trivial and (ii) there are no holomorphic 1-forms. Let n: T—T
be the natural projection. Then the canonical divisor

Kr=n*(Kp)— &

=n*((degQ, +degQ, + degQ; +degQ,) - H+ Kpe)|;— &

=n*(8H-TH)— (In{x,=0})

=0,
i.e., the canonical divisor is trivial. Statement (ii) amounts to

dim H® (Q}) = dim HY ! () + dim H' (07) =0,
or what is the same
1O =dimH° (0p) — dimH* (0p) + dimH*(Op)=1—-0+1=2.
In view of the exact sequences
0-0;->7,0—>n,0,0,—0,

0-0,>7,0;-7,040,—0,
we have

10 =x(n, Op)
=x(Op + x(n, . 01/Op)
=x(OD+ 1 (1, 03/0 )
=10+ x0)=10y),
with x(0,) =1 — genus (§)=1—3 = —2; also x(0z) = —8. By an argument due

to Mumford [19], x(@;) = 8, and s0 3 (0;) = 8 — 8 — (—2) = 2, proving (ii) and thus
the theorem.

Remark. It is reasonable to conjecture that the K3 surfaces obtained here are
Kummer surfaces.
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8. A Curve of Rank 4 Quartics and Abelian Surfaces of Polarization (1, 6)

[n Theorem 7, it was pointed out that the abstract curve ¥ < IP* can be represented
as a family of rank 4 quadrics in ¥ by substituting Q, for ¢, into ¢(Z, W); see Fig. 3.
This procedure can now be generalized to a situation of quartics, where much of the
geometry carries over. In the classification of the left-invariant metrics on SO (4) for
which geodesic flow
., .. OH o, OH

X=x'Asg X =xNe
is algebraically completely integrable, we found a one-parameter family of metrics
(see Adler and van Moerbeke [2-4]) given by

1—-a)(1+3 1 1-3
H=xf+a2xi+(——————~—a)§ 2) XXy — (————-—————+a):(z %) Xy Xs

_(+a)(1-30® , (1+a’(-3a) , (A—d)(1-947)
16a *3 16a Y6~ 8a *3%6

withaeC, a+ +1, +1/3, 0. The associated flow has besides the orbit invariants
T, =lix'|I?, T,=|x"||*> and the energy H above, a quartic invariant Q, to be
exhibited below. To this end, perform a linear change of coordinates x ~ y, given in

Appendix 3; there also we define the quadratic expressions G,,...,Gg in y;
expressed in terms of the G;, the system admits the following invariants:
QIEaG2+11—+_3—aaG7—cly3

0,=—aG, +11_%G8 —c, 3

—32_(1—32)G(i+3a)_1fl3a’1fz3a_c3y‘2’ )
Q4= m'((l —a)(1-3a)(Gi+GH + (1+a) (1 +3a)(G% + G2)

+3(1-d*)(2G,G,~GH+4(1 +a)G,(Gs+ Gg) +4(1 —a) G (G + G,) — ¢, v8.

4
Itisshown in [3, 5] that the affine intersection /= {}{J, =0, y, = 1} completes into
1

an abelian surface 4 with polarization (2, 12). Associated with this polarization,
there is a very ample divisor D on A4 of geometric genus 25, with 8 normal crossings;
thus the smooth version D of D has genus 17. The space of sections L(D) is 24-
dimensional and contains 10 odd and 14 even sections, showing the period matrix
must have the form

2 0 a c a ¢
(0 12 ¢ b>’ Im(c b)>0'

_ This curve D can be viewed as a 16-fold cover of a rational curve € in two
different ways as illustrated in Fig. 8. On the one hand, D is a 4 — 1 ramified cover of
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the component 8’ < I'n {y, = 0} = IP®, which is “‘reached” by the trajectories of the
flow. The curve &’ is rational and along there I experiences a 4-fold normal crossing
with various pinchings. In turn, &' is a 4 — 1 ramified cover of a rational curve &,
which will play the same role as the curve of rank 4 quadrics for the polarizations
(1,1) and (1,2).

On the other hand, in order to identify € as a curve of rank 4 quartics, it is useful
to consider D as a cover of & in a different way. Namely D is a 4 — 1 unramified
cover of a genus 5 curve D, itself a 4 — 1 ramified cover of ¢, an intermediate curve
being the hyperelliptic curve

H: W2(@Z+B)? —2WP,(Z)+ P,(Z)=0,

where

PZ)=(co0—2Z)Z+c; Z+c,(1=2Z)2—Z(1 — Z)(yZ+8)ch+4c ¢, — 85 ¢3)
Py(Z)=(Z+B)P(Z)—2Z(1 - 2)T, 2
with

PD)=—co(1-2)Z+c,Z+c,(1-2)
co=c3(3a*+1)—c; —¢,
Ty = x> = Bey + Be, — c3(a* —1)88
a=16a> PB=(@a-1)>Ga+1) y=4a Jd=(a—1)Ca+1);

in the formulas above ™ denotes the involution an —a.

To summarize, D is a 1 — 4 unramified cover of the curve D, of genus 5, while
D, is a double cover of the hyperelliptic curve #, ramified at 4 points, where
P,(Z)=0. We are now in a position to make the following statement:

Prym (Do/#) > A > D(g=25) «— D(g=17)

4-1 unramified

ramified 4-—-1
H
= =5
D, {WzUz(l—Z)Z} (g=9%)

€
& = {XZ =Z } 2-1 ramified at 4 points

Yi=1-2Z where P,(Z)=0

H = {WaZ+B)? = 2WPs(Z) + Pi(Z)=0}
(g=2)

ramified 4—1 2-1 ramified at oo and the 5 roots of

P} ZY—(0Z+ PP P(Z)=Z(1-Z)Ry(2D)

¢={W=2}
Fig. 8
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Theorem 9. Given the divisor D and the space of quartics

V=V(0,0;—cic;¥§, 1Si<j<3, 0,),

the curve € can be realized as a curve of “‘quartics of rank4”’

3
¢ ;(di (Z)yi+ 2:43(2)yi43) F(0) ~ c(2) ¥,  F, quadrics €)

in V, by substituting Q; for ¢; (given by (1)) in P,(Z). Conversely, given this
curve € of “‘quartics of rank 47, there is a 1 — 4 map from € to a component &' of
n{Q;=0, y, =0}, along which the surface I = IP® has a four-fold normal crossing
with a number of pinch points. Blowing up I along &' turns &' into the curve D
defined by
(U*(1—Z)2)*(aZ+ B)? —2U*(1 — Z) ZP5(Z) + P,(Z) =0, 4
X:=2Z, Y?=1-2Z

where P5(Z) and P,(Z) are the polynomials defined in (2).
Proof. Substituting Q, for c; in P, (Z) realizes ¥ as a curve of rank 4 quartics in ¥
€ Q,=z21F +22F,+ 23 F, — P,(Z)z}, (3)

where the z; denote the linear expressions of y appearing in (3) and the F; quadrics of
the usual block form,; it is convenient to express the quadrics F; in terms of the z; (as
done in Appendix 3), although they must be thought of as functions of y;. The
Z-dependent linear map y ~ z and the quadrics F, are given in Appendix 3.

In analogy with Theorem 1 and based on the form (5) of O, €%, we define a
natural map from % to &' = N {Q,=0, z,=0}. The intersection

{Q_Z':Os Zo =0} A {aéz/azzo’ 2020}

contains the plane ® z;, = z, = z, = z; = 0. Thus the intersection of the plane with
two generic quadrics Q' and Q” in the span V(Q,, Q,, Q;) will consist of four
points dependent on Z. This procedure can easily be carried out by choosing for Q'
and Q" the following two quadrics

G;=P3(Z)|c,-0, c,=0, c;=0, With G,=G,—P3(Z)7}
Hy=x+x3+ x2=(6y,+06y4)> + 6y, +0ys5)* — 6y +dys)?,
by performing the change of variables y ~ z and by observing that

2a(a—1) , 2a(a+1) , a®—1
Z(Z-1
Gelsimsimsim0= ( Savi 2t 3a-1 2T qpa-1n ) @D

Hyl, _. . _o=4728%(Z—1) 2+ 452222 — 52522

_—

¥ Moving with Z
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One then verifies that
' ={G,=0}n{H;=0} n{zp=12,=2,=2,=0}
={(z},22,...,2)=(0,0,0,0, — 52,62, 4y%)}

_{ y=(o V1 Z yz 1 1 1 1 ©

- yanla---9y6 - Z 1 Z Za 1/1—;—23 ‘l/z, 1-Z .
Thisis a 4 — 1 cover of € (Z plane), ramified at Z =0 and 1. In exactly the same way
as in Theorem 1 one shows that I is singular along &'

In order to establish the converse, we first notice the following relation between
the quadrics F; and G,

3
F=p;G,(0,0,0,2,,25,2¢) + Z 2,4 (25, Z14.3) )

with y; depending on Z and the/;; linear functions of z; this shows in partlcular that
F,=0along &’ Itis convenient to replace the quartic Q, by a new quartic O ,, which
vanishes as well on T and which is defined by

~ Q)G
3

_yz (zz m,,<z>) (iuizf)fa<z>z3—zu<z>zg, using (7)
1

1

~

Q.

with linear functions m;;(2).

Consider now the chart on I around most of &', which is defined by the non-
homogeneous equation y;ye + y3 + ¥ = 0; this is legitimate since that relation
vanishes automatically along &, as seen from (6). As was done in the second half of
Theorem 1, we must extend the variable Z to a neighborhood of &' in I, by
introducing a relation between Z and y, which is satisfied on &'. In view of (6), this is

achieved by setting
1 1
Z=——=1+—
Y3 Ye
in the chart y;y, + y; + s =0.
In this chart, z; =0, z5 = 2y and hence z,z, = 0; we now perform a first change

of coordinates
(y09y1’""yG)r\(yO’Z!uU-"suS)
defined by

zZi 3=y (i=1,2), 22+ =uy,, Z—0>=usy,, Z= “’1‘= 1 +“1‘-
Y3 Ve
Here, the z; must be viewed as functions of y; and Z. Using this change of
coordinates in the quadric 0, =0, adequately prepared [see (1) in Appendix 3],
leads to
(4~ 1) + O (y)) 3 =0

Upon dividing by y3 and upon taking the limit y, =0, we find (u; —u,)|, o=
This conclusion suggests, in a second step, an amended change of coordmates

Dos Y155 Y6) > (YVo, Z,uy 4y, uy, Uus)
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defined in the same affine chart by

Z124=U1)o zﬁ+52—cu1y0=u4y§
2,25 — 2124 =Up Y} 22_52_5”13’0=“5yg 3
1 1
Z=—=14+—.
V3 Ye

Expressing the quadrics Q; [see (1)] in terms of the z; and noticing that Q; vanishes
along &', we have that

Q_i = Qi - Q—i‘(zg ..... 22)=(0,...,0, —8% 82, 4y%)
=a;(z5 — 52) + Bi(2§ - 52) + 7:(22 "4?2) +6;2,24
+ linear function (z,z5 — 2z, 24, 2326, 27,23,23) — ¢;¥e =0. 9

with ;, B;, and v, rational in Z. Performing the change of coordinates (8), the
second line in (9) is divisible by y3, whereas the first line is divisible by y,; however
by choosing c appropriately in (8), the first line has order yZ as well. Dividing by y3,
one easily finds

M(Z,uy) Uy, us, us)"=f(uy, 2) +yo 8, Z,3), (10)

where the 3 by 3 matrix M (Z, u,) has determinant 3 h(Z); so M is invertible fgr
most values of #; and Z. Finally, we use the coordinate transformation (8) in Q,

QZ|23=0,26=27=RZ+SZ :
= ((@Z+ B)* 15 — 2Py (Z)ity + Pu(Z2) Y5 + P, Z,¥0) y5,  (11)
where R, and S, lead to terms of order y§ and y; respectively and where

2
ﬂﬁa1=<yz";5) (1-2)Z(@*~1).

Dividing (11) by y2 and letting y, — 0 in (10) and (11) lead to
(@Z+B)*at ~2P5(Z) i, + P4o(Z)=0 and  M(Z,u,)(uy, us, us)" =1 (1, Z),

showing that u,, u,, u,, and u are all rational functions on the curve announced in
(4). At a few places along &', like Z =0 and Z =1, the coordinate change breaks

down and hence a separate argument must be made, ending the proof of
Theorem 9.

Remark. The divisor D on the abelian surface is the same as the curve D, but with 8
normal crossings. The latter cover the point Z = — §/y, which is also the locus where
the quartic @, z, = 0 is a product of two quadrics; the two quadrics happen to be
the orbit invariants T, and T, introduced in the beginning of this section.

Appendix 1

Lemma. (i) The curve of rank 3 quadrics € =V ~ IP? contains a line component €' if
und only if, in appropriate coordinates, V contains the following two quadrics

Qi =x}+x}, Qy=xi+xi.
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Then, with regard to Q, and Q,,
¢ ={0,+1Q0,=x1+(1+0)x;+tx}, teC}.

(ii) € contains a degenerate component €', which is not a line, if and only if in
appropriate coordinates, V contains the following three quadrics

either case (A):

Q =xi+x3+x3, Qp=xi+xi+x3 and Qy=x;X,+ X x5+ X3
or case (B):

Or=xi+x3+x], Qr=xi+x3+x3 and Q3=2x;X,+x,%5+a;3%3.

Then, with regard to Q,, Q,, Q,

1

3
€ = {tle + 0, +21Q5 =Y (tx;+ x,13)%, te(l:}c(g in case A
2
={t2Q1+Q2+2tQ3=Z(txi+xi+3)2+(t2+a3t+1)x§,teC}C € in case B.
1

Proof. (i) Let ¥’ be a line component of €. Since V satisfies condition C2,
any point of ¢’ has the form x7 + x3 + y3x3 (with y; possibly 0), maybe after
a linear change of coordinates. Any other point on %' must have the form

3

Z(“ixi+°‘i+3xi+3)2; 50

1
3

€' ={s(x}+x3+y3x3)+ Y (0;x;+ ;4 3X; 4 3)> = sum of 3 squares, for all seC}.
1

For this quadric to be a sum of 3 squares, a;, ; =0 (i=1,2,3) must hold. Then,
using condition C2 once more, one checks, upon some rescaling, that

%' = linear span of the quadrics x2+x% and x%+x3,

concluding the proof of (i).

(ii) Next consider the case of € containing a degenerate component %’, being
different from a line. So ¢’ =two dimensional plane = V. All quadrics in % have
rank 2 or 3, but never 1 by condition C2. This rank must be generically 3, for
otherwise the curve ¢’ would reduce to the vertex of one of the cones K, which is
impossible, as €’ is a curve. Therefore we may pick one quadric

24 2 2
Q,=xi+x3+x3.

Besides, not all remaining quadrics [modulo permutations of (1,4), (2, 5), (3, 6)]
on ¢’ have the form

(o) +0tgX4)* + a5 x5 + a3 x3; 1

indeed, if all quadrics in €’ would have that form, then since €’ lies in a plane and
since €’ is not a line, there would be three independent quadrics of the form (1);
therefore their linear span would contain a quadric f2x? + B2x2 + 284X, X4,
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violating condition C2. Therefore, the remaining quadrics in €' must generically
have the form

either case A: Q,=x2+x2+x2 or case B: Q,=x2+ x%+ x3.

Hence let us pick Q, asin case 4. Then the plane containing ¢’ must be spanned
by the following three quadrics

0, =x}+ x}+ x}
0, =x%+ x+ xZ
3 /
Q3 =2x,x4+ ) (0 X7 4 oy 3 X703 + 205 143X %54 3),
2
and expressing that the linear span XQ, + YQ, + ZQ, contains a curve of rank 3
quadrics amounts to the relations
XY=2*
X+ Z2)(Y+of3Z)=0};52%, i=2,3;

for this to define a curve, you must have o, =0y = a5 =0, =0, 035 = a3, = 1, and
hence, perhaps after flipping some signs, Q; takes on the form announced in (ii).
Finally, picking Q, as in case B leads to the other normal form in (ii), thus ending
the proof of the Lemma.

The corollary below refers to the space ¥ of quadrics of the form Q, = Q, — ¢;x2.

Corollary. Whenever € contains a degenerate component €' which is not a line, then
for generic c;, V contains the following three quadrics

case (A4)

0i=x24+x2+x3,0,=x2+x2+x2 and Q,=x,x,+ X, X5+ X3X5— X2
case (B)

O1=x1+x3+x3, 0y =xi+x3+x] and Qy=x,x4+X,x5+a3x]— X}
where Q, and Q, do not contain any x2 term.

Proof. Asboth cases are similar, we prove the theorem for case (A) only. From the
Lemma above, Q; can be picked as

0, =x}+x3+x]—c;x3,
0,=x2+x24x2—c,x2
and 03 = X, X4+ X2 X5+ X3 X6 — C3 X5
Then the curve ¢’ in the hyperplane V=V (Q,,0,,0;)< ¥ has the form
_ _ _ 3
¢ = {t"’Q1 +0,+210, = (1x;4+ x,,.3)* = (t%cy +2tc;+ ¢,) x5, te (E};
1
for generic c;, the coefficient of x2 vanishes for distinct ¢;. Picking the corresponding

pointsin ¢’ leads to Q, and {0, as promised and then repeating the argument in the
above lemma and rescaling x, leads to Q5 as announced in the corollary.
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Appendix 2

Normal Forms for a Basis V

The purpose of this section is to prove Lemma 1 of Sect. 3. We now list the nine
normal forms, which are classified according to the position in IP? of the vertices

(@ Biivs = BE 143, %f43Biies — Birsaisess —Biivss %,43) Of the cones X;.
The proof of Lemma 1 depends crucially on the following:

Lemma. Let the linear span V with basis Q,,i=1,..., 4 of Sect. 1 have the property
that every pair of columns in the matrix

O1a %25 o} —af 1
<ﬂ14 525 ﬁ%”ﬁf) ()

is independent. Then and only then after a linear change of the basis, V has a basis of
‘the form NF1.

Proof of Lemma. By condition C1 of Sect. 1, we may, after alinear change of basis,
assume o, 4, B4, %35, and B, = 0. Then in order to find @, and @, of NF 1, we find
X,Y,Z,U)and (X',Y',2Z2',U"YeK,nK, with Z+ 0 and U’ +0 and in addition
satisfying
@ E+oiZ+pU) (Y +oaiZ+BiU)=(Zoyq+UB1a)* =0
with X+a2Z+p2U=0, )
(b) X+a3Z+B3U)(Y+aZ+f3U)=(Zoys+ UBys)* +0,
and
(@ X'+aiZ'+BIUNY +edZ' + iU )= (Z 014+ U B14)* #0,
() X' +a3Z'+B3UYY +a3Z' + BiU")=(Z"ay5+ U'By5)* =0 3
with X' +a2Z'+B2U' =0.
Indeed, system (2) has a solution with Z=0: at first solve (a) for U and X
in terms of Z and then (b) is solvable in Y by the independence of the first and
last columns in (1). Similarly solve (3) by using the independence of the last
two columns. The independence of the first two columns of (1) assures the

inequality in (2) and (3). Then the new quadrics XQ, + Y@, + ZQ, + UQ, and
X'0,+Y'Q,+Z'Q,+ U’ Q, have respectively the form

a;xj+(ayx, +asxs)* + term containing x5, xs, da,,as+0,
(byxy +byxs)* + bix2 + term containing x5,xs, b,b,+0.

These quadrics, together with @, and Q, span V. The proof of the Lemma is
finished by noticing that if ¥ admits the basis NF 1, then any other basis with 0, and
0, as before satisfies the condition placed on matrix (1).
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Proof of Lemma 1. If the condition of the Lemma or some permutation thereof is
satisfied, then V admits a basis NF1 permuted accordingly. Therefore an
obstruction will occur whenever every one of the six matrices (1 £i<j<3)

2

2_ .2 2
M _(“i,i+3 %i+3 & —“i) M/__<ai,i+3 ®jj+3 0‘,+3_°‘i+3>
4= 2 _p2}e Tl 2 2
Biivs Bij+s Bi—Bi Bii+s Bij+s Biva—Bivs

admits a pair of dependent columns. All the different cases of this fact will now be
investigated, leading to the exceptional forms NF2,..., NF9,

Case 1. Assume the first two columns are dependent in at least three of the six
matrices; then simple inspection shows ( ~means proportional)

(145 %25,%36) ~ (B145Bas, Bae) s

in which case every matrix M;; has already two proportional columns. The
proportionality relation shows that Q can be replaced by an appropriate linear
combination of Q5 and Q, with no cross-terms, while x2 and x2 can be removed by
subtracting an appropriate linear combination of @, and Q,, leading to the quadric
Q, appearing in NF2,

This case breaks up further into three cases.

@ Qy=oix3+aixi+oaixd+alx? with all  o; 0,0 + a3,

af + o2,
(b) Qi=alxI+aixi+aix3 with all o, 0, 0? + o3,
() Qs=02x2+a2x3 with all o, %+ 0,03 + a3,

and Q, as before. Indeed in (c), not satisfying the inequalities would violate
condition C2; in (b), a, = 0 would violate C2 and «, = 0 would imply (c); &, % O can
always be made to hold, because if o, = 0, @3 — a3 @, would have the coeffi-
cient of x% non-zero, which could be renamed into x? via the relabeling
(1,4,2,5,3,6)~ (6,3,4,1, 5,2) which puts us back into case (b); and a? = o leads
back to the case a; = 0, just considered, by relabeling. Finally, violating any of the
inequalities (a) leads back to (b) or (c). Moreover, in @, the terms x3 and xZ can be
removed by forming Q, — f3Q, — BZQ,. The three cases above can be summarized
by the conditions going with NF2.

Case 2. The first columns are dependent in precisely two of the six matrices,
while in the other four, the dependence involves the last column. The only
case to be considered is the one where M,; and M|, both have proportional first
columns, for some choice of i, j, since any other case would imply (Casel)
(%4> %25,036) ~ (B14> P25, B3s)- In view of the relabelings it can be assumed
without loss of generality that (a,s,05,) is proportional to (f,s,8;¢) in the
matrices M,, and M};. Then in each of the remaining four matrices, the last
column is a multiple of the column (a4, f,4)T Or (255, B,5)7; in short, the four
columns whose lead entries are (a3 — a?, a2 — a?, af — a2, a2 — a2) are proportional
to columns with lead entries a, , or «,5; we list all alternatives for the lead entries of
the columns (up to relabeling):

(g, 014,01 45%14)s (F1as®%1as®%1as%as)s (®y4,%14,%5,%,5),

(014,025, %54,025), (Fyas®25,05,%4), (O25,025,025,014)-
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To get the above list, rule out the case («,5, 0,5, %,5, %, 5) by condition C2 and keep
inmind (¢55, %36) ~ (55, B36)- After taking appropriate linear combinations of the
basis of ¥, the following choices for the pair Q5 and Q, remain, corresponding to
the above ordering:

() {Qs =20,5X, X5 + 2035 X3 X

O,=2B14x1 x4+ B%x% + ﬂ§x§ + B§x§ + ﬁéxé,

(i) {Qa =205 X, X5 + 20036 X3 X + AZ X,
Q4 =2B14%, x4+ B5x5 + BExI + B5x3,

(i) {Q3=2d25x2x5+a§x§+2oc36x3x6+aéx§,
Oy=2P 4% x4+ ﬁ%xé + ﬁ§x§a

(iv) {Q3=2“25x2x5+“§x§+2“36x3x6+°‘<23xé,
Qs =2P 4%, x4+ B5x5 + pixE,

) {Q3=2a25x2x5+a§x5+a§x3+2a36x3x6
Qs=2B 4% x4+ ﬁ%x§ + ﬁ%xé,

252 L g2y 2,2
i) Q3 = a5x; + a5 X5 + 205X, X5 + a3 x5 + 2036 X3 X,
- 2,2

Q.=2P14x1 X4+ B6xs,

with all a;; and f;; nonzero by condition C1. We indicate the argument in the first
case only, where (k=a,,/814)

(03 —af,of — of 0 —of,af — o, afs) = k(B3 — B3, B3 — B3, B% — B3, B2 — B3, L)
and
!’
(025, %36) = k' (B1s, B36) >

with k,k’#0, and k+ k', to insure independence of Q; and Q,. Then by
subtracting appropriate combinations of @, and Q, from Q, and Q,, we may
assume a,, o, B, and fi, =0; then replace

Q3 Q3 —kQu=2(xys — kf25) X3 X5 + 2(d36 — kf36) X3 X6,
QN Q3 —k'Qu=2(ay 4 —k'Bra)xy X4 + (0] — k' B3) x5 + (2} — k' B3) X2
+ (0 — k') x} + (0f — k' B2) X2,

and relabel. Since k % k', these @, and @, along with Q, and @, form a basis of V'
and by C1, the new «;;and B, do not vanish; this is case (i) with B % p3 or B3 + B2,
for otherwise Q, — B2Q, — p2Q, would violate condition C2. This is precisely form
NF3. Similar arguments lead to (ii), (iii), (iv), (v) and (vi).

Case (ii) can be renamed into NF 4 with a; # 0, otherwise it reduces to a special
Case of NF 3. Case (iii) can be renamed into NF 6 with «, # 0, otherwise it reduces to
a special case of NF4; also, if a; = 0 would hold, the permutation 23, 56
Wwould turn it into a special case of NF4. Case (iv) is precisely NF 7, where a3 = 0, for
otherwise the permutation 1 >4, 2 <5, 3 <6 would turn it into NF4; also a, =+ 0
$0 this is not a special case of NF4. Case (v) is precisely NF5, where o = 0 since
otherwise it is a special case of NF4 and also a, =+ 0, for otherwise the permutation
365,26, 1 >4 would turn it into NF4. Finally, the permutation 5 <6, 2 <3
turns (vi) into NF 8, with «, + 0, since otherwise it is a special case of NF7; also
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o % 0 or else this is a special case of NF 6 and finally a3 & 0 or otherwise this is a
special case of NF 5 under the 2 «» 5, 3 «» 6 permutation. The inequalities on the f’s
in NF3 to NF8 are present to satisfy condition C2.

Case 3. Ineach matrix M;;, the last column is proportional to one of the remaining
columns. Most of the cases violate condition C2 or the independence of the
quadrics or they can be reduced to another one by renaming, so that only two cases
remain, namely:

(a) (a145a%-a%7a§_“i)N(ﬁll&aﬁ%'— %5ﬁ§_ﬁi)a
(a369a§ -—-otf,acé - ai)~(ﬁ36,ﬁ§ - %3ﬁ§ —ﬂi)a

(“25#% -oc%,oté —“g) ~ (ﬁzs,ﬁg _ﬁ%,ﬁé "‘Bg),

or (b) (OC14,G(§ _a%»aé _ai)N(ﬁ149ﬂ§ - f’ Bé _ﬁi)r
(ot25,ot§ - “%’ag *di)'\‘ (ﬁzmﬂg _ﬂga ﬁg —ﬁi)z

(a367a§ —O(f,dé - a§)~ (B36’ﬁ§ - %9/3% —Bg)

These cases amount to normal forms NF9, a) and b), concluding the proof of the
Lemma.

Appendix 3

The linear change of coordinates x ~ y, defined by
x.) \3a+1 1) \Ba-D(@+y,
X, _ a+1 -1\ {(a+ 1Dy,
xs) 3a—1 1) \@Ba+D(@—1y;
x3\_ f(a—1 a+1 (a—1)y;
)  \3a+1 3a—1]) \(a+1)ys)’

transforms the geodesic flow of Sect 8 into a new system, whose constants of
motion are given by (1); the quadratic expressions G,, ..., Gy are given by

-2
G =yi—V2Js G4=1—_‘_"3‘a-(J’2y3"J’5J’6)
Gy =YY, Va)s Ge=y1Y4FV2Vs—V3Ve
G, =Vi=y1)s Gs =—1%§;(y1y6—-y4y3)

G, =J’f")’:§+)’1)’4
Gs=y3—YVé+2Vs-
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Consider now the linear functions z,,...,z¢ of y,,...,¥s, dependent on the
parameter Z

Li=Zy+(Z-N)y, Zy=(a—1)2,+3y,
L=Z-Dy,+2y;s Zs=(a+1)Z+3ys
2By=Zys+(Z-1)ps  Zo=05%+8a(Z— 1)y
(21,25,23) = WZ+O)(Z-1)"1? 2,277 5, 5,)
(24,25, 26) =(Z—=1)'? 2, Z'* 2, Z) .

Here and in the sequel, we use a, f, y, 6 defined in (2) of Sect.8 and

¢=(a—1)(3a—1); theinvolution = denotes the sign flip a —a. Then referring
to Sect. 8, compute ’

2—
G;(0,0,0,z,,25,25) = Z(Z—1) <2aszﬁ+2a§z§+a 5 ! zé)
and
G,(2) — G;(0,0,0, 24,25, 26)
=2181(2)+2,8,(2) +2385(2)
=Z(1-2Z){(a+1)8z,z4 +(@—1)8z,z5+ 4a’z,z¢)
Z(1-2)(1-94%) 2 2.2 2
36Z+90) 4ad(Z—1)z} +4adZ%z3 +646723).
Moreover
2Z(Z-1)
== 4G
! (’VZ+5) z 2y =2,=2,=0
Z*1-2)*Ba-1
_ZU (yZ:-(é)a )(8a2§zzzs+2(a—1)2(a+1)z3z6——(a—1)3z§)
2Z(Z—-1)
F,=—"——_—-§G
2 (’)}Z‘I"é) z zy=2,=2,=0
Z*(1—-2)*Ba+1
_ZX (yZ)+ES)a+ )(8082124+2(a+1)2(a—1)z3z6—-4a3(3a—l)zf)
8Z(Z—1)
=——0rn=>a6
} ('})Z‘f‘é) z zy=2,=2y=0
Z*(1-2) . 222
——Gm—(Sa(a—l)azlz4+8(a+1)ezzzs——(a+1) £23) .

Making occasional use of the substitutions
82=(2+6%)—z2 and 6 =(z2+6%)~22,
the quartic @, evaluated at z; = 0 and z¢ = 2y turns into

QZ|23=0,26=275R+S (1)
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with

2328 R=22228(2, 2,2 (22 + 8D ((a+ 1)z, 24 — Ba+ 1)z, 25)
4a(1 —9a%)
(YZ + 8)*
(0(2124)* 23+ 0(2,25)* 20) (0(1 — 2)*(2124)* 25 + 827 (2,25)* 25)
' < —@(YZ+8) 5373 (2,247275)° )

Py (2)
za-2)"°

+22323(2,25)* (25 — 6" (Ba— 1z za —(a+ D) z,25) +

P(?) .

—22322(8(2,24)° 23 + 8(z,25)* 23 Z*1-2z*"°

S 20— 2428V 2+ 8) 57

and

S=—-((1+a)z,z,+(1—a)z,25) (2124_2225)2-
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