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1. Introduction 

Since Jacobi and Klein there has been considerable interest in the problem of  the 
intersection of  quadrics and the study of their moduli. This problem is particularly 
interesting when the affine intersection of  quadrics completes into an abelian 
variety. We conjecture that the intersection of  four quadrics in IP 6 completes into an 
abelian variety if and only if their linear span contains a non-degenerate curve of  
rank 4 quadrics. In this paper, we show the conjecture for a natural set of  quadrics 
inspired by dynamics; they lead to abelian surfaces with a certain polarization and 
at the same time we reveal their beautiful underlying geometry. We also show how 
this idea generalizes to quartics. Other circumstances leading to abelian varieties 
have arisen in the classical literature. As pointed out by Weil and fully developed by 
Reid [21], the moduli space of the intersection of  two quadrics in IP N (N odd) 
coincides with the moduli of  hyperelliptic curves of genus ( N -  1)/2; this problem 
has been related to dynamics, specifically to Jacobi's geodesic motion of ellipsoids, 
by Moser [18] and Kn6rrer [13]. For  N =  3, Reid's result leads to the elementary 
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fact that an ellipsoid intersects a sphere in IP 3 according to an elliptic curve. A 
dynamical system on this elliptic curve is the famous Euler free rigid body motion, 
whose invariant surfaces are given by the sphere and the ellipsoid. In a different 
vein, Klein [12] studied the 3-dimensional variety of spherical triangles on the 
sphere, which turns out to be the complete intersection of three quadrics in IP 6. 
Tyurin [22] has studied the question of the moduli space of the intersection of three 
quadrics in IP n (N even) and Barth [8] has shown that the question is intimately 
related to classifying stable algebraic rank-2 vector bundles on IP 2. 

Thus, it seems that Hamiltonian mechanics often provides descriptions of the 
moduli of abelian varieties. The Arnold-Liouville theorem [6] asserts that a 
compact (real or complex) connected n-dimensional manifold M having n 
commuting everywhere independent vector fields is diffeomorphic to a torus. In an 
integrable Hamiltonian system, the invariants (of sufficient number) define the 
manifold M and the Hamiltonian vector fields generated by the invariants in 
involution provide the commuting vector fields on M. In many cases, the problem 
has much more structure, namely the real invariant surfaces extend to affine 
complex varieties. Only after adjoining an appropriate divisor can they lead to 
abelian varieties on which the above flows (run with complex time) are linear 
motions. These flows are then solvable in terms of abelian integrals. A dynamical 
system for which this is possible will be called algebraically completely integrable, as 
first defined in Adler and Moerbeke [1, 5]. 

The Euler rigid body motion mentioned above is nothing else but geodesic 
motion on SO (3) for a left invariant metric which can be interpreted as geodesic 
motion on a 2-dimensional ellipsoid. The generalization of this problem to geodesic 
motion on ellipsoids of arbitrary dimension leads to a description of the moduli 
space of the intersection of two quadrics in IP N (N odd) mentioned above. Another 
way of generalizing the SO (3) problem is to turn to integrable geodesic motion on 
SO (4) = SO (3) | SO (3), of which special instances have been studied around the 
turn of the century in the context of rigid body motion in fluids by Clebsch, Steklov, 
and Lyapounov (see Adler and van Moerbeke [5]), although obstensively in the 
context o fE  3 = SO (3) x R 3. This leads to an example of four quadrics in IP 6 whose 
complete intersection is an abelian surface only after blowing up and down. 
This has led to a classification of the left-invariant metrics on SO (4) for which 
geodesic flow is algebraically completely integrable [3], as announced in [2, 16]. 
This set of metrics consists of three different strata, a first one, for which the 
invariant surfaces complete to hyperelliptic Jacobians, a second stratum (Manakov 
metrics) leading to abelian surfaces with a polarization (1,2) and a third set to 
abelian surfaces with a polarization (1, 6). The first two cases lead to examples of 
four quadrics in IP 6 whose complete intersection is an abelian surface only after 
blowing up and down. The third case finally leads to examples of 3 quadrics and 1 
quartic in IP 6. However a number of systems do not have quadratic invariants, but 
still they linearize on abelian surfaces with principal and (1,2)-polarizations. For 
instance, the equations for the Kowalevski top linearize on abelian surfaces of type 
(1,2), as does the H6non-Heiles system and the Manakov geodesic flow. Therefore 
there must exist a rational map transforming one problem into the other. This relies 
heavily on finding good normal forms for the quadrics defining abelian surfaces of 
that polarization. The results contained in this paper have provided the key to 
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realizing both the Kowalevski and the H6non-Heiles systems as a Manakov 
geodesic flow on SO (4) and thus providing a Lax pair for these systems. Observe 
that abelian surfaces are not simply connected, and therefore can never be 
themselves projective complete intersections. And so, the complete intersection of  
the four quadrics in IP 6, if it is to be related to an abelian surface, must contain a 
singular locus 8. The nature of this singular locus will play an important role in this 
paper. 

The main purpose of  this paper is to describe a natural class of four quadrics 
(~1,-.-, Q---4 in IP 6 of the block form 

3 

E (7/z x~ + 7/2+ axe+ 3 + 27i, i+axix,+a) - cx~ 
1 

leading to abelian surfaces and provide their moduli. This class is specified by 
requiring that the linear span V of the quadrics contains a non-degenerate curve cg of 
rank 4 quadrics (sum of four squares), rather than a discrete set of points, as would 
be the case for a generic set of 4 quadrics. This set of quadrics can equally well be 
described, as is done in Theorem i (Sect. 2), by requiring that their intersection in 
IP 6 be singular along some component ~ at infinity (i.e., at x o = 0) of  genus =t = 3; then 
6 is a natural 4 - 1 unramified cover of ~. The abelian surface is then obtained by 

4- 

blowing up the intersection N {Qi = cixg} in IP 6 along #and  blowing it down along 
1 

the complementary locus at infinity. 
In Sect. 3, we provide a full description of the family of  linear spans Vdescribed 

above and we show that it splits into two definite classes, according to whether rg 
has genus 0 or 1 (Theorem 2). With regard to a fixed set of  variables, each of these 
classes is parametrized by high-dimensional varieties f spelled out in Theorem 3. 
However, allowing linear changes of variables, these classes, away from the branch 
locus of  ~ ,  can be described by a set of four canonical quadrics (normal forms) 
depending on 3 parameters in the first case and 4 parameters in the second case; this 
is carried out in Sects. 4-6. Theorem 7 of Sect. 6 is the main result of  this paper. In 
Sect. 7, we assume that ff contains a degenerate curve component; this leads 
naturally to K3 surfaces. The parameters mentioned above produce moduli not 
only for the intersection of quadrics, but also for abelian surfaces of principal 
polarization (hyperelliptic Jacobians) and polarization (1,2) (Prym varieties of 
double covers of  elliptic curves). Moreover these normal forms yield the set of 
invariants for the algebraically completely integrable geodesic flows on the group 
SO (4) for specific families of left-invariant metrics. The latter have been classified 
by us in [2, 4] and the integration of the associated geodesic flows as linear motions 
on abelian surfaces has been carried out in [5], using the normal forms exhibited in 
this paper; the latter yield a handy set of coordinates in which to perform the 
linearizations. Finally, that discussion has led to a new left-invariant metric on 
SO (4) whose geodesic flow has three quadratic invariants Qi, 1 < i < 3, and one 
quartic invariant Q4. Upon blowing up the intersection in IP 6 defined by these 
equations along one component g of the singular locus at infinity and upon blowing 
it down along the other components, one obtains an abelian surface of polarization 
(1,6). Then 6 is a natural 4 - 1 cover of  a curve of "rank 4 quartics'" in the 6- 
dimensional projective space of quartic invariants generated by Q~ Q j, 1 < i < j  < 3, 
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3 

and Q4. A quartic has "rank 4" when it has the form ~ x~ (quadric)i. Most of  the 
0 

ideas for quadrics can then be extended to quartics. This is the object of  Sect. 8. 
As has been remarked, the methods employed are strongly guided by dynamics. 

We very much hope that these results will inspire the algebraic geometer to turn 
them into a more algebraic theory. Along these lines, there are some natural 
questions and extensions of  these results. Given the intersection of  four quadrics Q~ 
in IP 6 of  the most general form, it is plausible to conjecture that the affine 
intersection completes into an abelian surface if and only if the linear span V 
contains a curve of  rank 4 quadrics. Moreover what is the proper algebraic- 
geometrical framework in which to generalize the results about quartics in IP 6. 
Does it lead to descriptions of abelian surfaces with other polarizations? 

Notations. Consider the linear span 

V(Q1 . . . .  ,Qn )=  {~2 iQi , (~ l  . . . .  ,2n)~IPN-~}~_IP n-1 

of  N quadrics Q~ . . . . .  QN and its discriminant variety 

A(Q~ . . . . .  Qn)= {~12,Q , such tha tde te rminan t  ( ~ 2 , Q , ) = 0 }  

~- V(Q1 . . . .  , QN) ~- IpN-1. 

This paper deals with the situation of  4 quadrics Q1 . . . . .  Q4 in x of  the block form 1 

3 

E + 3g+ 3 + x,+3); 
1 

define (2i - Qi - ClXo z . Let al, ai + a and % i + 3 (1 < i < 3) be linear functions of  X, Y, 
Z, U defined by 

3 

XQ1 + YQ2 + ZQa + UQ4 = ~ (aix2i + ai+3x~+3 + 2ai.i+3xix,+3). (1) 
1 

Then, one checks that 

A (Q, . . . . .  Q--4) = a (Q1 . . . . .  Q, )  wH, 

where H is the hyperplane 

H = { p = ( X , Y , Z , U ) ~ I P  3 such that c ( p ) = X c  I + Ycz + Zc3 +Uc4=O }. 

It is easily seen that 

A(Q1 . . . . .  Q4)= K1 kJ gz k3 K3 ~-- IP 3, 

where the K~ are three quadratic cones in IP 3 

K, = {p ~IP 3, Hi (P) - a, a, +3 - a~,+3 = 0} ; (2) 

i Throughout this paper, the vectors x, y or z e IR 6 have the form 
x = (xl, x4, x2, xs, x3, x6) = (x', x") with x' = (xl, x2, x3) and x" = (x4, x s , x6) 
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they describe the locus of  Q ~ V (Q1 . . . . .  Q4) such that the ith term of  (1) is a perfect 
square. 

Henceforth, let 

V= V(Q 1 . . . . .  Q4) ~- Ip3, v =  V(Q1, . . . ,  Q.4) ~- Ip3 

A = A  (Q1 . . . . .  Q4), 2 = A ( Q 1 , . . . ,  Q,) .  

The space V will be required to satisfy the following three non-degeneracy 
conditions 2: 

Condition CO. After a linear change of variables not mixing up blocks there are two 
quadrics 01 and Q2 in Vhaving the form Q1 = x2 q- x22 q- x~ and Q2 = x2 + x2 -k- x62 . 

Condition C1. The three cones K/are irreducible (i.e., for every i =  1, 2, 3, there is 
some quadric in V, containing the term xixi+3). 

ConditionC2. The three cones Ki have distinct vertices (i.e., no quadric in Vhasthe 
form z 2 2 2 ])i Xi -~- ~i+ 3Xi+ 3 At- 27 i , i+  3X iX i+  3)" 

As a consequence of condition CO, one can pick a basis of  V having the 
following form: 

Q1 2 2 = X l  -~- X2-~- X 2 

Q2 = x42 + x2 + x2 

3 
2 2 Oa = ~, (azi x2 + O~i+ 3Xi+ 3 "~- 2~i,i+ 3XlXi+ 3) 

1 

(3) 

3 
2 2 Q4 = ~ (fi~ x~ + fli+ ax,+ 3 + 2fli, i+ 3xixi+ 3) 

1 

with fixed ai and fli ~ I~. With regard to this basis 

a i=X+c t2Z+f l~U,  ai+3=Y+ct2+3Z+fl2+3U, ai, i+3=~i.i+3Z+fli, i+3U 

and therefore the quadratic equations H i = 0 defining the cones K i are linear in the 
variables X and Y. Define (see Fig. 1) 

r = KI ~ K2 c~ K3 

the set of  quadrics in V 
of  rank 4 having the form 
3 

Y~ (~ixi  + ~i + 3 xi  + 3) ~ - c, x~ 
1 

3 

= ('] {p ~ IP a such that Hi(p) = 0} 
1 

2 The three conditions CO, C 1, C2 are generically satisfied 
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K~ t< 2 t( 3 

3 

Fig. 1 

Observe that the generic intersection ff = K 1 c~ K 2 c~ K 3 is finite and non-empty. 
Whenever (6 is a curve, it will be called non-degenerate, if (g ~ hyperplane in 
V = IP 3. Also define 

4- 

I= N{Qi- ci=O, x ~ 6 } ,  
1 

4 

i -  N{Q,- c,x~=O, x~]p6}, 
1 

8 =  {p ~]c~ {x o = 0} where ] is singular} ~ [ ~  {x 0 = 0}. 

Whenever dr is a curve, it will be called non-degenerate, if g ~ a 2-dimensional plane 
o f  the form 

3 

N {a,x, + a , + 3 x , §  = 0} {Xo = o} a '6. 
i = 1  

Let ~/Tbe the space of  linear spans Vwith regard to a fixed set o f  variables x. It  is 
naturally acted upon by the subgroup 

g =  S 3 | 6L(2 )  | GL(2) | GL(2) | GL(1) = GL(7), 

which induces linear maps on x o and each block (xi, xi+3) for 1 < i < 3 and which 
permutes the order of  the blocks. Thus it is natural to define ~ = #/g. 

2. Curves of Rank 4 Quadrics and Singular Curves at Infinity 

In this section we exhibit a natural 1-4  map  from the set of  rank 4 quadrics (g to the 
singular locus # of  i at oo. Then under some mild conditions, the set o f  rank 4 
quadrics and the singular locus will be curves at the same time; therefore if ff is a 
curve, dr is a four-fold cover of  ~ ,  which is sometimes unramified and sometimes 
ramified. As discussed later, the unramified case appears whenever the affine 
intersection of  the quadrics completes into an abelian surface, while the ramified 
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situation occurs whenever the affine intersection completes into a K3 surface; the 
former case is discussed in Sects. 4 -6  and the latter in Sect. 7. 

Throughout  this section, the space Vof  quadrics satisfies conditions C0, C 1, C 2 
and we pick a basis Qt,  . . . ,  Q4 of  the block form; see the notations in Sect. 1. Define 

cg, - cg \ {line and point components} ~ V 

8 '  - 8 \ {its degenerate and point components} ~_ l m  {x o = 0}. 

Then r is parametrized as mentioned in Sect. 1 by a family of  rank 4 quadrics 
having the form 

Q(p) = Q(p) - c(p)x2o = ~ (?,(p)xi + 7,+3 (p)x,+3) 2 - c(p)x~, p ~ ~ ' .  

Theorem 1. There is a 1-4  map from cg, to g' given by 

p c-~ Fp c~ [= 4 points, 

where 

Fp= 2-dimensional plane: ~') ~ 7i(p)xi-]-]~i+3(p)xi+3 ~--O} 
i=l (Xo=O, 1--<i<3 

while the map 

8 ' ~ c g '  

" F ~ Q ,  . .1  ~ 
q c'~ ~ n, (q) Qi, where (n 1 (q) . . . . .  n4 (q))r ~ kernel tq )h  ~_i z 4 

1 L J _ ] 0 < j ~  6 

provides the inverse. Hence cg, and 8' are curves simultaneously. 
The surface i experiences a two-fold normal crossing along 8', with pinch points 

occuring at c(p) = 0; unless 3 u~ = u~ = u~ on c~, 8' can be given by 

8 '  = Xl 2 x~ x~ , (1) 
u~ - u~ - u~ - u~ - u~ - u~ 

where u i - - - a i ,  i+3/ai+3 -~- --?i(P)/~)i+a(P) are rational functions on cg,. Upon 
normalizing [along 8', the curve 8' turns into the curve 

D =  U2 = e(p) �9 

Proof. Let cg,, be a component  of  cr Then referring to the notations in Sect. 1, the 
linear functions of  X, Y, Z, U 

2 2 and e(p) Yl (P) = ai, ? i + 3  ( P )  = a i + 3 , 7 i 7 i +  3 (P )  = ai.i+3 

are meromorphic  on cr for each 1 _  i_< 3, 72 or Y~+3 ~ 0 on ~r or else 
- t v e r t e x  K0 = point; this shows that Fp is indeed a two-dimensional plane. 

Next we show that 
r.c~[~= r.n{Q' =o} ~ {Q" =0}  (2) 

3 This actually happens when cg is degenerate; this case is discussed in Sect. 7 
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for appropriately chosen quadrics Q' and Q" in V. Indeed, for most pointsp e cg,,, V 
can be spanned by the four quadrics 

Q(p) c(p)x2o, OQ Oc Q, t 2 Q" C" 2 
- -  - -  - -  C X o - -  X o ; ~-p (p) ~pp (p) x 2, and 

their intersection is i as well. Since, evidently 

we have that (2) holds. 
To show that the image of  the map above is in 8, notice that the gradient 

0 (Q (p) - c (p) x2o)/Op of one of  the defining relations Q (p) - c (p) xo 2 = 0 clearly 
vanishes along the plane Fp. More is true: the image is in ~' ,  as xi+ 3/x~ (constant 
on F~) is a non-constant function ofl) E ~f" for some 1 N i _< 3. To see this, we must 
distinguish between two cases: 

(i) When ~ "  is nondegenerate. Then 

( ~2 ( ai(X,y,z,u ) xi+~ = ~(p) "]z 
\ x~ / Ir,~1, XY~+3(P)} =a~+a(X,Y,Z,U) #cons t  (independent ofpeCg"),  

since otherwise cg,'c hyperplane ~]p3  violating the nondegeneracy of if". 
(ii) When if" is degenerate. This case is completely spelled out in Sect. 7 and 

Appendix 1; from that analysis it turns out that for some i 

( xi+ 3~2 t ( 7 1 ( P ) ~ 2  =t= const" = 

Having defined a map from oK' to dr', we now show that it is 1-4; by a degree 
count, it suffices to show that the set (2) is finite. In (2) we may pick Q' = Q1 and 
Q" a generic element in V of  the form 

3 
tt ~2 2 2 Q = ~ (  i x2 + ~i+3xi+a + 2~ (3) 

1 

Then observing that ui(p) :~ const (for some i) on cg,, [see (i) and (ii) above], we get 

Fp,qi= Fp~ {al=o} n {O"=O } 

+ + = o 

= x21p1 (Ul) "~ x 2 P 2  (u2) + x23P3 (u3) = 0 , (4) 

xi+3=ui(p)xi, i =  1,2,3 

where 

Pi(ui) = ~ + a~+ 3u~ + 2o~i,i+ au,. 

The right hand side of(4) consists of  four points for mostp ~ cg,, unless the two first 
equations in the brackets are proportional, i.e., 

P1 (ul (p)) = P2 (u2 (p)) --- Pa (u3 (P)), for most p e qr (5) 
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In particular picking Q" = 0 2  forces ul (P) = u2 (P) = u3 (P) = u(p) for allp e c~,,, by 
possibly flipping the signs of  some x~. Since u (p) is nonconstant along c~,,, the 
polynomials P1, P2 and Pa agree for a continuum of values by (5) and hence 
P1 (u) = P2 (u) = P3 (u). This implies that the generic dement  Q" in (2) would have 
the form 

Q " =  ~12Q1 + ~]Q2 + 2~14(Xl x4 "~- X2X5 + X3X6)' 

showing that Vis three-dimensional, which is absurd. Thus Fp c~ i i s a  finite set and 
hence it consists of four points. This ends the proof that the map cg, __. 8 '  is a 1-4 
map, as it holds on each component cg,, of cg,. 

Conversely, we now proceed to construct the inverse map 8'c~. ~ '  in the 
following fashion. For q ~ 8", a component of  ~',  define 

. . . . .  

(21 (q) . . . .  ,24(q) ) ~ kernel \ O(x0 . . . . .  x6 ) j (6) 

the rank of that Jacobian matrix being < 4 (and = 3 as will be shown in Remark 1 at 
the end of the proof) along ~" and define accordingly the unique quadric 

4- 3 

Q(q)=~21(q)ai(x ) ~ ( ? ~ ( q ) x ~  + ?2+a(q)x2+a+ 27i,i+a(q)x, xi+a)~V. (7) 
1 1 

Statement (6) expresses that 

aQ(q)~3xi ~=~ = O, i= O, 1,..., 6, 

amounting to the linear system 

( 72(q)xi-~-Ti'i+3(q)xi+3~-O ~ i---- 1,2,3. 
Ti.i+a(q)xi + 72+3 (q) xi+a = 0J 

Hence the determinants 2 2 2 (7i ])i+ 3 - -  7i, i+  3)  (q ) ,  i = 1 , 2 ,  3 all must vanish, unless 
x~ = x~+ 3 -- x o -- 0 for some i along 8", which is ruled out by condition C2. Hence 

3 

Q (q) = ~ (7, (q) xi + 7i + 3 (q) x, + 3) 2 
1 

is a rank 3 quadric for every q ~ g". By the non-degeneracy of g ' ,  for some i and 
along each component of g ' ,  the ratio of Q (q) coefficients satisfies 

7,,,+3(q) + 7 , + 3 ( q ) = _ ( x ,  )1 72 (q) = - 7i(q) ~ ~ = non-constant function of q ~ 8' ,  

and so Q (q) defines a curve of  rank 3 quadrics in V ~- IP a as q varies along 8". This 
curve is not a union of  lines, for if it were, by Appendix 1, each line would be of  the 
form xl 2 +(1 +t)x~ + tx~, and so 8 '  would be a union of  points which is 
contradictory. By following through the maps cg' c'~ g'c'~ c~,, it is easily seen that 
we have constructed the inverse of the map from qr c~ g ' ,  thus proving the first part 
of Theorem 1. 
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6" 

Fig. 2 

The curve 8'  is given by (1), namely by adjoining the functions xx /x  3 and xz / x  3 
to ~ ' ,  as a consequence of putting xi+ 3 = u i (p )x  i into Q1 and Q2: 

o, = U l X  1 "~ U2X 2 "-~ Ig3X 3 ~- O. 

Then the remaining functions x , ,  x5 and x 6 viewed projectively are rational on 8'. 
Next we show that i experiences a two-fold normal crossing along 8'.  The 

formula (1) provides a parametrization of 8 ' ~  i in terms o f p  ~cg,. We seek to 
parametrize the surface i, in the neighborhood of 8 ' ,  by p and x o ; to do this, we 
extend the function p to a neighborhood of  8 '  in i, by solving the following 
equation for p: 

Z d, us (P) = Z d, x, +3, d, e IE, fixed, (8) 
Xi 

the right hand side being a function defined on L This can be done, since the u, (p) 
are non-constant meromorphic functions on g' .  Consider the local change of 
variables in i \  8 '  near 8 '  

3 

(x 0 . . . .  ,x6) with x 3 = l ~ ( x o , p ,  y l , y 2 , . . . , y s ) ,  w i t h Y ' d i y i = 0  
1 

defined by 

x~+3(P, X o ) = u i ( p ) + x o y  i i = 1 , 2 , 3 ,  
Xi 

xi 0 xAp, xo) = ~  (p,)+Xoy~+3 i =  1,2, 

with )-" d~y~ = 0 imposed to make it compatible with (8). Using this change of 
variables in the quadrics ~)(p) and OQ_./c3p yields 

and 

3 

i= l  
x~ (17, O) ~+ 3 (P) Y~ -- c (p) = 0 (x o ) 

3 

y, 
i= l  

x 2 (p, O) {~,, ~, + 3 } (P) Y, = 0 (Xo), 
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in addition to the customary relation defining the coordinates, 

3 
Ed, y,=O. 

1 

Here, the Wronskian {7~, Yi + 3 } = ~2 8 (7i/71 + 3)/OP is a meromorphic function on cg 
and g. By picking, for instance, d l =  d 2 = 0 and d 3 = 1, the three relations above 
have the solution 

+ 2 
f l  z f2  

f 2  (y4xl)2y 2 = c(p) + O(xo) 

y 2 =  _ ( x l ]  2 {7~,Y,} 
\ x2 /  {~2~Y5} y* + O(x~ (9) 

Y3 = 0 ,  

where the ratios 

f 2  = x2 {~;, 7~+a }2 
72+ 3 

are meromorphic functions on ~. Using the same change of  variables in the 
equations Q1 and Q2 yields a linear system in Y4 and Y5 

l X1 

U 2 U X 2 
Y5 X3 

= linear function in (Yl ,Y2)-b O(Xo). 

The upshot is that the Yi are all rational functions of  Yl, P and x 0. 
By picking other d~ = 0, one would find two cycled versions of  these equations 

with the same right hand side c (p) whereas the coefficient of y2 in (9) cycles. This 
implies t h a t f  2 + f 2  is a perfect square on 8 ' ,  because if not branching would occur 
at some simple zero o f f  2 + f 2 ,  which is not a zero of  c(p); hence it would occur in 
all the cycled equations and thus at such a p o i n t f  2 "3!- ~c2j2 ,.12~c2 +r a n d f  2 + f 2  would 
simultaneously vanish, which is checked to be impossible. Thus the only branching 
for Y l occurs at the zeroes of  the meromorphic function c (p) on & which has simple 
zeroes for generic c i. 

Remark 1. With regard to the Jacobian matrix (6) in the proof  above, note that, if 
its rank < 3 for a generic element q e g",  it would lead to a surface of  rank 3 
quadrics, which can be eliminated using condition C 1. 

Remark 2. As pointed out, Theorem 1 also holds for a degenerate component ~" ;  
then the map from if"  to 8 is worked out explicitly in Sect. 7 and Appendix 1, where 
it is also shown t h a t / i s  a K3-surface after blowing up the surface along 8. In this 
case, the functions ui satisfy u 2 = u 2 = u 2 and thus the expression (1) for the curve 8 '  
must be slightly modified. 
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3. When Does V Contain a Curve of Rank 4 Quadrics? 

As before, the space Vsatisfies conditions C 0, C 1, and C 2 and thus contains a basis 
of  the form (1.3); note that x 0 does not play any role in this section. This section 
addresses the question how to describe the set of  spaces V of  quadrics depending on 
a given set o f  variables xl . . . .  , x6 such that V contains a non-degenerate curve of  
rank 3 quadrics (rank 3 and not 4, since x0 does not play any role here). It is shown 
that this set splits up into two very distinct strata, described in detail in Theorems 2 
and 3. Each of  these strata leads, as will appear in later sections, to different types of  
Abelian surfaces. Before being able to do so, one must provide a parametrization of  
the linear spaces V (with regard to the fixed set of  variables x l ,  . . . ,  x6) in terms of  
some canonical basis in V; this parametrization is only valid in a certain affine 
patch, while the different patches can be distinguished, one from another, by the 
configuration of  the three vertices of  the cones K~. This indispensable but tedious 
classification is stated in Lemma 1 and proven in Appendix 3. Finally, for future 
use, we define the 3 x 6 matrix of  coefficients of  the basis (1.3) 

A = O  ~,~ t~, ~ (~,,,+~+&,+~)~ ~ ~ ~ 

the square matrix 
B (1 ~+3  2 = E+3),=, ,~,3 

and the 3 • 9 matrix (A, B). 

Lemma 1. The linear span of quadrics V subject to the customary non-degeneracy 
conditions CO, C1, and C2, admits, in appropriate coordinates, a basis either of the 
normal form 

NFI: Q1 = x~ + x 2 + x~ 

Q2 = x] + xz + x2 

Q3--- 2 2 2 2 ~4X4.4_(X2.~_O~sXs)2 jt_(O~3X3 2 2 --~ CZ6X 6 -4- 2 t ~ 3 6 X 3 X 6 )  

2 2 2 2 2 2 
Q4 = (X1 Jt- fl4 X4)2 "3t- fl5 X5 "q- (fl3 X3 "~- f16X6 "~- 2f136X3 X6) 

or of the form given by NF 2 . . . .  , NF  9 as listed in Appendix 2, up to permutations of 
the Q~ and up to the following permutation of the variables x,: 

(i) interchanging the 3 blocks (xi, xi+a) of variables 
(ii) interchanging (xl,  x2, x3) ~--,(x4, x s , x6), 

N F  1 turns out to be the generic situation, while N F 2 , . . . ,  N F 9  can be regarded as 
boundary cases. 

Proof The configuration o f  the three vertices of  the cones K~, i = 1, 2, 3 in Vserves 
to distinguish between the nine cases. The proof  of  this lemma appears in 
Appendix 2. 

Theorem 2. The linear span V of quadrics satisfying conditions CO, C1, and C2, 
contains a non-degenerate component ~f' c ~f ~ IP 3 of rank 3 quadrics if  and only if 
the following two conditions are satisfied: 

(i) V has a basis of the form NF 1 (besides one other case where V has a basis of the 
form NF3,  which is a limiting case of NF1) and 
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(ii) c~, = @, where c~ is either an irreducible rational curve with vertex (Ki) ~ @ 
(Case 1) or an elliptic curve (Case2 ) .  

We now describe in terms o f  the basis N F  1 the exact  conditions leading to Case 1 
or Case 2: 

Case 1. ~ = irreducible rational curve with each vertex (Ki) ~ c~ 
r the cones K i are linearly independent and K i c~ K~ = ~ w linei~ 
r the basis NF 1 o f  V satisfies the conditions 

or4 = fls = O, rank A < 2 and B < 2 
(spelled out in Table 1) with the quantities 
55, f14, 0~3, 56,  f13, f16 and 52 - f12 all # O. 

Case 2. cg = elliptic curve 
the cones Ki are linearly dependent 
the basis NF1 o f  V satisfies the condition: rank (A, B) < 2 
(spelled out in Table 1) with 

5s, [L, 53, ~3 ~ 0 

t~ 6 or f16 ~t= O, O~ 4 or f15 :# 0 

5~ - 5~ or ~ - 8~ * o 

5~ - 8 ~, or 5~ - 8~ * o 

5~ - 8~ or 8~ - 5~ * o. 

Remark.  Observe that the normal form NF 1 is invariant under the involution 

(xl,  x4) ,--,(x2, xs), (x3, x6) stay, (~4, ~5) ~ ( 8 5 , 8 , ) ,  

(~3, ~6, ~ )  ~(8~, 86,/h~). 
Both the conditions in case I and case 2 are invariant as well under this involution, 
so that every identity appearing in Table 1 is either self-dual or the dual identity 
holds. Also with regard to Table 1, notice that without loss of generality, we may set 
~36 ~--- ~ 3 ~ 6 , 8 3 6  : 8386 by absorbing the sign of ~36 and 836 into ct 3 and 83. 

Proof. In view of the special form of Q1 and Q2 in (1.3), the set of rank 3 quadrics 
cg c V is given by the following equations 

~ =- K c~ K2 c~ K3 
_ a 2 . ' ( X , Y , Z , U ) e I p a ,  H i - a i a i + 3  ,,,+3, i =  1,2,3, 

=-(x+o,? z + 8~ v) (r+o,L~z + sL~ v) 
= - (~i.i+ 3 Z + 8~.~+ s U) 2 (1) 

= r Z,  U ) X +  m~(Y, Z,  U) = O, 
r Z, U) linear. 

Then @ contains a nondegenerate irreducible curve @' (i.e., not in a hyperplane, in 
particular not in r = 0 and not in U = 0) if and only if 

3 

@c~{e, = Y + . . .  4=0} = ~ { e i X + m , = O }  c~{e, 4=0} 
1 

= {(v~,v:,e~) - ( r  ^ ( m x ,  m ~ ,  ms) = 0} c~ { r  m~ = 0} c~ {r 4= 0} 

= {P2 (Y, Z, U) = O} ~ {P3 (Y, Z, U) = O} c~ {e~ X +  ml = O} c~ {G 4: O} 
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(Using the identity ~fiPi = (E, fAm> ---= 0 and r 4= 0) contains a non-degenerate 
curve ~ ' .  Therefore it suffices to investigate under which conditions the varieties 
P2 = 0 and/ '3  = 0 have a non-degenerate curve in common. 

The polynomials P2 and Pa will take on quite different forms according to 
whether V is spanned by a basis of  the form NF  1 . . . .  , or N F  9. In this proof  we shall 
deal with the basis NF 1, while the remaining NF  2 . . . .  , N F 9  will be investigated in 
Lemma 2. For  the basis NF1,  substituting ~{1 = ~q4 =/32 =/325 = 0, o{ 2 =/31 = 1, 
(~25 = ~ 5 ,  /314 = (~4- into (1) leads to 

{Pa(Y,Z,U)= y2(z-u)+ Y(aZ2 WbZU+cU2)+ ZU(dZ+eU)] 
with a = ~2, b = 2 2 2 , - - = - / 3 2 ,  ( 2 )  

d= e~ (/3~ - e~), e =/32 (/3~ - e~) 

while P2(Y,Z,U) is a similar expression. Under what conditions do the 
polynomials Pa and P2 have a common factor which is non-linear? Since the 
common factor is not allowed to be in the hyperplane U = 0, we may set U = 1. Now 
we are facing two possibilities according to whether/ '3 (Y, Z, 1) is reducible or not. 

Case 1. Pa (Y, Z, 1) is reducible. Then P2 (Y, Z, 1) = 0 and P3 (Y, Z, 1) = 0 define a 
non-degenerate curve ~f if and only if they have a common quadratic factor. By 
careful inspection, Pa (Y, Z, 1) can be shown to factor in exactly five different ways, 
recorded in the first column of  Table 2. Each way of  factoring implies relations at 
the level of  a, b, c, d, e; they themselves, upon using their expressions (2) in terms of  
the ~,/3 yield the relations listed in column 3. In the last column it is seen that all 
cases, but case (iv) a, violates either condition C 1 or the non-degeneracy of  rg. A 
remark at the end of  the proof  o f  this lemma, will sketch the proof  of  the violation in 
case (ii) (Table 2) for instance. 

Hence from Table 2 it is seen that the only admissible case is (iv)a: ct 4 and 
/35 = 0 with ~t 5 and/34 4: 0. Note from (iv) that also ~2 4=/32, or else y2 (Z  - 1) = 0, 
which would violate the non-degeneracy of  rg. Equations g l X + m l = 0  and 
Y ( Z - -  1 )  -[- a Z  2 --k b Z  -b c = 0 provide X and Y in terms of  Z, which upon 
substitution into H a (X, Y, Z, 1) = 0, gives rise to a 4 th degree polynomial identity 
~c~(~, f l )Z  ~ -  0 in Z, if cg is to be a curve. Hence all c~(~,/3) vanish, leading to 
the 5 relations 1. in Table 1 upon using ~4 =/35 = 0 and the inequalities /34, 
Cts, ~2_  fiE # 0. They are easily seen to be equivalent to rank A and rank B __< 2. 
The remaining relations in Case 1, Table 2 (which will be useful in later sections) are 
merely consequences of  1. and 2. With regard to the inequalities, we already have 
shown flg,~s, ~t 2 - /32 # 0. As to the remaining inequalities, conditions C1 and 
C2 imply ~3, ~6,/33, f16 # 0; indeed using 1. and 3. (Case 1), a s , f14 4= 0 and condition 
C 1, we see that ~3 and t~ 6 vanish simultaneously, while ~t 3 = ~6 = 0 would imply 
Q3 = (x2 + or5 xs) 2 violating condition C2. We proceed similarly for f13 and f16. 

Case 2. P3 (Y, Z, 1) is irreducible. I f P  2 = P3 = 0 is to define a curve ~, then the poly- 
nomials P2 and Pa must be proportional and since (Pa, P2) = (1, - ot~) y2 Z + . . . ,  
we must have in particular P2 (Y, Z, 1) = - ct~ P3 (Y, Z, 1) for all II, Z. Then also 

3 

PI=(~2-1)Pa; indeed ~ # i P i = O  yields ~1P1=(~  2 t 2 - E a ) P a ,  and since the 
1 
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linear expressions gx and ~2 ~2 - -  ~3 do not vanish on the curve cg, the polynomials P1 
and P3 vanish simultaneously; then the irreducibility of Ps and the fact that 
PI = (~2 - 1) y2 Z + ... imply P1 = ( ct] - 1)P3. Consider now the set 

{(a,/3) [P3 is irreducible and P2 = -~]P3  for all Y, Z} 

= {(~,/3)IP 3 is irreducible and f ^  m - (PI, P2, P3) = (a2a - 1, - ct 2 , 1)P 3 } 

{ (ct, fl)lP 3 is irreducible and there exist functions r/i(~,/3) dg 0, 
such that q =(q~,r/2,q3) satisfies QI,~) = 0, <q,m> = 0  J 

(a,/3)1P3 is irreducible and there exist r h (a,/3), not all zero, such that 
3 

= OI, E X + m ) = Y ,  rliHi(X,Y,Z, 1)=O foral l  X,Y,Z, 
1 

i.e., the Hi are linearly dependent functions of  X, Y, Z 

P3 is irreducible and the 3 by 8 matrix of coefficients 
= (~t,/3) of the Hi, i = 1,2, 3, has rank at most 2, i.e. rank 

(A, B) < 2. 

The equalities rank (A, B) < 2 are easily seen to be equivalent to all the equalities 
1., 2. and 3., of case 2; they in turn imply the remaining equalities of case 2, listed in 
Table 1. The equalities combined with the conditions C 1 and C 2 imply a number of  
inequalities, besides ~s and/34 4:0 (normal form NF1). Also ~6 or/36 4: 0, or else 
~a6 =/336 = 0, violating condition C1. Condition C2 implies ~a 4= 0; indeed ~a = 0 
and Table 2 would imply ~z = ~2 and Q3 - ~2 Q2 would violate C2, and similarly 
/33 = 0 is forbidden. Moreover ~2 -/32 or ~2 _/32 4= 0, because, if not, ~2 =/32 and 
then 2Gt 6/36 ~3/33 = 0, and thus, since ~3 and/33 4= 0, a6 =/36 = 0, which already has 
been ruled out. Also ~2-/32 o r /32_  ~2 4= 0, because otherwise a2 =/32 and the 
identities in Table 1 yield 

+ 2 3/33 4 5 = 2 3/33 ( 3/36 -  6/33) (a3 6 +/33/36)  

= 2~3/33 [(a~ -/3~) ~6/36 + (/32 - a2)a3/331 

= [/3~/32 __ Or20~2 '-I" (~2  - -  f132) (0~30~ 6 "1 ! - / 3 3 / 3 6 )  2 ] 

2 2 2 2 2 
= - ~3  ~6 + (eta 

= 0  

which contradicts the previous inequalities. Finally, the irreducibility of the 
polynomial P3(Y,Z, 1) implies ~2_ ~t2 or f12_/32 4=0 and also gr or /35 4= 0, 
completing the verification of  all inequalities, listed in Case 2 of Table 1. This 
concludes the proof of Theorem 2. 

Remark. As an example we now check the non-degeneracy assertion of case (ii) 
Table 2, as promised. There we found that ct ] ~2 4= 0 and 2 2 = /35 =/34 4= 0. Then the 
curve <g is defined by E x X + m x = 0  and the quadratic factor appearing in 
P3 (Y, Z, 1) (see Table 2) [which must appear in P2 (Y, Z, 1) as well]. Hence 

z 2 x = z(p  - 

( z -  1)r= j (3) 
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By the non-degeneracy of if, we have ~ 2 , 8 2 .  Clearly from the above expressions 
for c~, the following five points 

(X, Y, Z) = ( - 1, ct ] - 82, ~ ) ,  (0, 0, 0), ( - 1, ~ ,  1), ( ~ ,  84 ( -T- ~4 - 84) - 1, + 84/~4)), 

belong to ~ and substituting them into H a = 0 leads to the respective equalities 

0~26 2 2 2 2 2 2 = + = 1 ,  = = 83 f16, 0C2 "~-- 0C4(0(4 --  81)  - 1, 862 - -  82 (~2 - -  82) - 1 .  

Substituting Xand Y from (3) into H 3 = 0, and using the above identities, leads to a 
quartic polynomial identity in Z, whose vanishing contradicts C 1 and the non- 
degeneracy of  cg. 

Lemma 2. Among the spaces of quadrics V having a basis of the form NF 1 . . . . .  NF9, 
and leading to a non-degenerate curve ~ '  c ~, we can have a basis of the form NF 1 
(discussed in Theorem 2) or NF3. The space V having a basis NF3 and having a non- 
degenerate curve fg' c ~ is spanned by the following four quadrics 

l im[Q,,QE,(Qa-~-]Qz)=,==,+=;,,Q,~],  

#~, .--, 0 

where Q1, Q2,Qa,Q4 is of the form NF1, subject to the conditions of Case2 
(Theorem 2). Hence the only remaining case, besides the cases discussed in 
Theorem 2 is merely a limiting situation of Case 2. Then the curve r~ of  rank 3 
quadrics is an irreducible rational curve and the cones Ki are linearly dependent. 

Proof. The proof follows that of Theorem 2 and we refer the reader to (1) and there 
abouts for notation and discussion. We shall discuss one by one the different 
normal forms NF2 . . . . .  NF9 listed in Appendix 2. Consider 

NF2: Qa(x)= 2 2 ..{_(O{2X2..l_~sXs), (~1Xl  T'i- (Z2X2"~4. 4.1 2 2 

Q4 ( x )  ~- (82  x 2 q- f12x2 4- 2 8 1 4 x  1 x4)  4- (82 x 2 4- 2825  x 20r -q- 2 8 3 6 x 3  x 6 ,  

with ~1, fl14, 825 ~: O, and (without loss of generality) set % = f l 3 6  = 1. From the 
discussion centered about (1), the locus ~f containing a non-degenerate curve leads 
to two cases: 

(a) PI(Y, Z, 1) is irreducible; then if r~ is to be a curve, PI(Y, Z, 1) and 
/'2 (Y, Z, 1) must be proportional, leading to the following two cases: 

81 = , 8~4 8225, ~2 5, 8 4 - 8 5 ,  implying 

2 2 in violation of  C2, Q1 + Q 2  - = +  sx6, 

o r  

(ii) 0 • 2  -2  02  4,45,pl,f12,f12 = 0  and (1 2 2 - 8 2 5 )  = (1 - 8 4), 

implying ~ is a degenerate curve. 

(b) P1 (Y, Z, 1) is reducible; check P1 has the form: 

P1 -- ZY2 -}- ( aZ2 + bZ + c) Y +  (aZ + b), with c = l - f l 2 5 . 1 ,  
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and then one easily checks Pa can only factor  in two ways: 

Pa= Y ( Z Y + c )  or P I = Z ( y 2  + a Z Y + a )  

a , b = O  b , c = O .  

Then f rom H 3 = X Y -  1 = 0 on cg, conclude 

X P t =  Y ( Z + c X ) = O  or X P a = Z ( Y + a Z + a X ) ,  

implying cg is a degenerate  curve;  this shows tha t  N F 2  can never  lead to a curve o f  
rank 3 quadrics.  

NF3: Q3 ( x )  = 2 x 2 x  5 + 2 t ~ 3 x 3 x  6 

2 2 2 2 4. Q, (x) = (flZx2 + f14 x4 + 2f114x~ x , )  + f12 x2 + flax3 

with c%, ill4, f13 or f15 4: 0. 
Observe  tha t  Z is de te rmined  by X, Yvia  Ha  = 0 (U = 1); also observe  tha t  since 

Ha = 0 (irreducible) and  ct2H2 - Ha = 0 on c# and  since bo th  relat ions are seen to be 
functions o f  X, Y only, these two relat ions mus t  be p ropor t iona l  if  cg is to be a curve, 
leading to the identities and inequalities 

2 2 2 2 2 2 = 1, + fla/ , = 0, + i ,  0 

That  c# is nondegenera te  follows f rom the irreducibili ty of  H I = 0. Tha t  this is the 
asserted limit o f  Case 2 follows immedia te ly  upon  subst i tut ing the identities above  
in N F 3  and put t ing  fll = 1 ; the lat ter  can be done  wi thout  loss o f  generality, since 
f12 R2 __ ~2 ae4 - ~'14 + 0, by setting Q4c~ f l l  2 Q4. 

Remark. The case above  m a y  be reparamet r ized  as follows 

Q3 (x) = 2x  2 x 5 + 2ax a x 6 

Q4 (x) = (x 1 + bx4) 2 + (1 - a -  2) b 2 x 2 + (1 - a 2) x 2 , with 

NF4-8:  

with 

a2 4: 1, b + O .  

Q3(x  ) 2 2 2 2 

2 2 2 2 2 2 Q4(x) = 2xlx , ,  + (f12x2 + flsXs) + f16X6 

~2 o r f124 :0 ,  fl]4:f12 if f12=0,  and ct25 and  ~36 4= 0. 

4 The basis given here is easily seen to be equivalent to the basis of NF 3 given in Appendix 2, by 
setting Q3 c-~ ct2s Q3 and Q,,c',., Q.,. - fl2Q1 - fl,~ Q2, and then relabeling 

Since 

P2(Y ,Z ,  1 ) = Z Y 2 + ( a Z 2 + b Z + I ) Y + ( c Z + b ) ,  a - c =  -0t26 ~= 0, 

P2 (Y, Z,  1) is easily seen to be irreducible,  and  so i f f f  is to be a curve,  P2 and  P3 mus t  
be p ropor t iona l ;  consequent ly  ct2 4: 0, otherwise ~25 = 0, violat ing C 1, but  ~2 ~ 0 
forces f12 = 0 and  fl~ = f12, a contradic t ion  o f  the above  inequalities. 

NF9: Q a ( x  ) = (O~2X2.~_2~25X2X5)..k (0~32 X32 _]_ o~2x26q_20~a6X3X6), 

2 2 2 2 Q4(x) = (fl2x ] + 2flx4xlx4) + (f12x2 + f15x5 + 2f125x2xs), 
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with ~t36 fl2s 4= 0 and a 6 fl# = 0 and set a2s = fl1r = 1 without  loss o f  generality. The 
locus ~ containing a non-degenerate  curve leads to two cases: 

(a) P2 (Y, Z, 1) is irreducible; as above P2 (Y, Z, 1) and Pa (Y, Z, 1) must  be 
proport ional ,  yielding in order  ot 3, f12 and tiES = 0, a contradict ion.  

(b) P2 (Y, Z, 1) is reducible; then P2 = 0 takes the form 

P2 = f ZY2  + ( aZ2 + bZ  + 1) Y A- Z ( d Z  + e) = O. 

Observe that  f 4 :  0, because otherwise a 6 f14 = 0 and P2 reducible imply a4 = f16 = 0, 
and hence P2 = Y(  az2  + 1)  = 0 ,  which would force cg to be degenerate. Also we show 
fie = 0, otherwise f14 4= 0 and a 6 = 0 forces d 4= 0 and e = 0, easily leading to P2 = 0 
being irreducible, which is a contradict ion.  To  sum up f 4 :  0, f14 = 0; this yields 
b, d =  0, which forces / '2  to factor as follows: 

P2 = f ( Y Z  + r) (Y+  sZ)  = 0, for some r and s; 

then, as a consequence of  H 1 = X Y -  1 = 0 on ~,  

XP 2 = f ( Z + r X)  ( Y + sZ) -- O, 

forcing cs to be degenerate,  which is a contradict ion.  This ends the p r o o f  of  
Lemma 2. 

Before considering Theorem 3, the reader  is referred to the definition o f  the 
space ~ o f  linear spans V o f  quadrics (with regard to a fixed set o f  variables 
xl  . . . . .  x6), as stated in Sect. 1. 

Theorem 3. In parallel with Theorem 2, we distinguish between the two cases: 

Case 1. The stratum ~tr 1 in ~ leading to Case l ,  with running variables 
2 2 2 (ar f14, as,  f12, a3, a6, f13, f16) is a rational variety over 

a6, e r = 1}. 

Case2. The stratum ~2 in ~ leading to Case2, with running variables 
(~t4,fl4,as,fls, ~3,"2 ~6,"2 pa,~ flz6) is a hyperelliptic variety: it is a double cover of  
C 4 = { ( a 4 ,  f14, as,f15)} ramified over the eight hyperplanes defined by 
�9 4 +-f14 + ~s +-[35 = O. On these hyperplanes and only on them, a 2 satisfies the 
relation 

4 2  2 4 2  2 ~  cta~ f15 - f13~4flr -- O. (4) 

Proof. As the description o f  3r follows at once from Table  1, we turn  to 3w 2 . The  
quadrat ic  equat ion 6. (Table 1, Case 2) in ~2 

~4k2 + 2 2 2 2 2 _  a3 (4~5 fls - 4ct4f14 k 2) + 4a2fl]  = 0 (5) 

defines a double cover  o f  (a4, f14, as,  f ls)~ Cr ramified over the zero locus o f  its 
discriminant 

2 2 2 2 2 2  (4asfl  s - 4 a r 1 6 2  ) - 16k2~2fl 2 

= (2~q fls + k - 20~4fln,) (2a s fls - k + 20retie) (2~ s fls + k + 20~4fl4) (2a s fls -- k - 2t~r 

= H (a 4 +_ f14 -+ ~ts -+ fls), (this p roduc t  taken over the 8 possible signs); (6) 
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this defines the eight hyperplanes mentioned in the statement. Moreover, by 
Table 1, the three remaining quantities 82 , c% 2 and 82 are linear functions ofct 2 over 
(~4, 84, ~s, 85) e C 4. Hence "Ut can be viewed as a fibering of hyperelliptic curves in 
the variables (a32 , ~4) over the base space (84, ~5,85) e C a. To prove the last part of 
the lemma, notice that on any of the eight hyperplanes, the discriminant (6) of  (5) 
vanishes and hence 

a~ = (2 k 2) - ' ( k  2 - 4 (a~ 8~ - a~ 8~)), 

yielding the identity (4), upon using relation (6). Conversely (4) has for solution 
(using a ~ + f l ~ = l )  

~484 • ~5fl5' 

which put into (5) leads to the equation k = + 2(~t4fl 4_+ a 5 fls) for the hyperplanes. 
The result holds as well when 0~4fl 4 +_ ~5 f15 = 0; then (4) implies ~2 = f12 = 1/2, which 
substituted into (5) yields the eight hyperplanes, concluding the proof of  
Theorem 3. 

i 

4. The Rational Curve of Rank 4 Quadrics and a Canonical Basis for V 

Allowing linear changes of  variables, we provide a canonical basis for the space V, 
discussed in Case 1 of  Theorem 2. This situation relates to one of three distinct 
strata of left-invariant metrics on SO (4) for which geodesic flow is algebraically 
completely integrable. 

Theorem 4. Let the space V contain an irreducible rational curve cg of  rank 4 quadrics 
containing the vertices of  the cones K i . Then V can be spanned by the three rank 3 
quadrics ~)i(1 < i < 3), corresponding to the three vertices and an appropriate fourth 
quadric 04, which after a suitable change of  variables x c'~ z take on the form 

~)1 Z~ 2 2 = --Z3--CIZ 0 

= - - 

Q--3 z] 2 z 
--Z5--s 0 

Q _ . 4 = - ( z l - z 4 ) 2 + 2 ( z z - z s ) 2 - b 2 ( z 3 - z 6 ) 2 - c 4 z ~ .  

(1) 

The curve ~r of  rank 4 quadrics, with regard to this basis, is described by 

C), O, Q-, 

z - 1  +z+Y 

= (2 ~ z )  z l +  ~ z 4  + ~ 2 - ~ z 5  
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where 
c ( Z ) =  Cl c2 c3 c4 

Z - 1  Z - 2  F Z + - 2 - "  

The curve ~r in V has 6 distinguishedpoints, given by the divisor of poles and zeroes of 
c(Z). They map into six rank 3 quadrics: the poles eorrespond to the vertices of the 
cones Ki, which are the quadrics Qx, Q2, Q3 and the zeroes correspond to the three 
other quadrics which are independent of  z z. 

The affine intersection I = n { Q ~ = O ,  z o = l  } supports the following two 
commuting vector fields: 

X 1 : z 1 ~ z 2 z 6 

Z 2 =�89 3 ( z l + z 4 )  

Z3 = �89 (Z1 + Z4) 

z 4 = Z 3 ,75 

zs = z3z, 

Z6 ~ Z1 Z2 

X 2 : z 1 ~ z 5 z 6 

z 2 ~ z 3 z 4 

z 3 ~ .  z 2 z  4 

~4 = Z5 (2Z3 - -  Z6) 

Z s = Z 4 (2Z3 --  2"6) 

Z 6 ~ Z 1 Z 5 �9 

Up to a linear change of variables, the four quadrics Qi provide the four constants of 
motion of the completely integrable geodesic flow on the group SO (4) (see Adler and 
van Moerbeke [4, 5]) 

OH OH 
Xn: ~ '=  x" ^ Ox'" = ^ Ox" (2) 

~'or the left-invariant metric 
6 

I =1-s + s x,+3 
2 1  

where (A 0 = 2 i - 2j) 
2 2 2 

( 2 1 4 , 2 2 5 , 2 3 6 )  (A46 A32 - A65 At 3) 2 

( (A32-A6s )  2 (A13-A46) 2 ( A 2 1 - A s , ) 2 ~ ,  
=A13A21A32A46A54A65 \ A32A65 ' A13A46 ' -~2T~45 4 ] 

with the sign specification 

21422s  236 ( A 4 6 A 3 2  - A65 A13) 3 

= At3 A21A32A46As*A6s (A6s - A32) (A46 - A13) (As4 - Azx)- 

Proof. According to Case 1 of  Theorem 2, Vhas a basis of  the form NF 1, with the 
and/~ subjected to the conditions of  Table 1. Then using the basis Qi of  NF1,  
observe that 

Q3 = (X2 "~ ~5X5) 2 "~ (0~3X3 "~- 0~6X6) 2' Q4 = (xl + B, x4) 2 + (83 xa + f16x6) 2 

and 

6 ((f13 a6 - 33 f16) (a3/~3 Q1 - 36 f16 Q2) + f13 ]~6 Q3 - ~x3 ~x6 Q4) 

= - - (~36X1 + 0~6f14X4) 2 "4- (/~3~X2 "~ #6~5X5)  2, with fi = ~3~6"~  #3/~6,  
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yield three independent rank 2 quadrics. Upon making the change of  coordinates 

Yl = - - ~ 1 7 6  Y4 "-~ --ct3(Cta6xl +o~6fl4x4.) 

Y2 = f13f16 (X2 + ~5X5) Y5 = fla (flat'x2 + fl6~5 xs) 

Y3 = eta flail6 (~t3 xa + ~6x6) Y6 = fla~a~t6 (flaXa + f16x6), 

the three rank 2 quadrics, together with Q1, are seen to be proportional to a new set 
~-2  of  quadrics depending only on one parameter a - 1 - 3 , to wit 

Qi (y, a) = y22 + (1 - a)y 2 
a~ (y, a) = ay 2 - (1 - a) y 2 
a~ (y, a) = ay 2 + y2 (3) 

Q~.(y, a) = (Yl --Y4) 2 d- (Y2 --Y5) 2 d- (Ya --Y6) 2" 

The curve of rank 3 quadrics in V with regard to the basis Q" is given by 

Qi Q~ Q~ 
s - 1  + ~-Q~ s - a  s 

=[" l~-aY't? ~ V f I ~ I~- I k~ I I~-a I~- ~ V 

It is striking to observe that by a rescaling y c-~ z and by picking a new basis, the 
parameter a in (3) is arbitrary. Indeed 

s 
s--Z- ]- a l (y, a) = a l (z, b) 

s(s-1) , 

(s -- a) 2 Q2 (Y, a) = Q2 (z, b) 

s - 1  
- -  Q~ (y, a) = Q~ (z, b) 

s 

( Qi + Q) Q~ ~-Q~)(y ,a)=Q~(z ,b) ,  
~ - 1  s - a  s 

where a and b are related by a fractional linear map 

b - a ( s -  1) 
s- -a  

and where the rescaling y c-,, z is obvious from the identities above. Hence we may 
put a = 2 in (3), leading to the announced normal form Qi (up to a trivial rescaling) 
and the curve ~. The three vertices of  the cones Ki, which belong to c~, correspond 
to the three rank 3 quadrics Q~. 

Finally one checks that the geodesic flow on SO (4) for the metric mentioned in 
the statement of  Theorem 4, has a set ofinvariants of  the form (3) with a = Aa2/A31 
upon making the linear transformation x c~ y 

yi=ei(eixi+ei+3xi+3), yi+a=ei+a(ei+aXiq-eixi+3), 1 < i < 3 ,  
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with 

(e2, . . . ,  e62) = (A46A~2, A65 A21, A65A3t,  A4-sAt a, A54-A32, A64-A32). 

Using the same argument as before to scale out a, the set of quadrics (3) can be 
transformed into the set (1). The Hamiltonian vector fields X n of (2) defined by 
H =  ~9~ and ~)3 in (1) yield the vector fields X~ and X2; they commute because 
clearly the vector field Xt preserves the quadrics Q3 and so 

0 = X a (Q;) = XQ;(Q;) = {Q;, Q;} ,  

where the Poisson bracket is taken with regard to the SO (4) symplectic structure. 

5. The Elliptic Curve of Rank 4 Quadrics and Canonical Bases for 

Consider the situation discussed in Case 2 of Theorem 2, namely where V contains 
an elliptic curve rr of  rank 4 quadrics. The purpose of  this section is to find a 
canonical basis for Vby picking distinguished configurations of points on the curve 
and by allowing linear changes of  variables; these changes depend strongly on the 
geometry of the curve rr A first canonical basis is obtained by picking a set of 3 
quadrics on rr which are simultaneously diagonalizable (Theorem 5). In that form, 
they tie up with the geodesic flow on the group SO (4) for the Manakov metric. 
Another canonical basis exhibited in Theorem 6 is constructed by picking three of  
the four collinear rank 3 quadrics lying on rr this construction is inspired by K6tter 
[14, 15]. Both canonical bases, which depend on 4 continuous parameters, will be 
crucial in determining the moduli of the intersection of  the quadrics. 

In Lemma 3, we show that the elliptic curve is non singular away from the 
branch locus of  the variety Y'2 discussed in Theorem 3 and away from 4 additional 
hyperplanes. Lemma 4 gives the three points on the curve which yield the first 
canonical basis. 

Lemma 3. In Case 2, described in Theorems 2 and 3, the curve cg ~ Ip3 is an elliptic 
curve over the Z-plane ramified at the four points 

Z =  - [33([36-6[33[34)  6 = + 1, ~ = + 1; 

~3 ( ~  - ' ~ : ~ 3 ~ )  ' 

the curve becomes singular when the ~i's and fli's belong to the eight hyperplanes 
~4 + [34 +- ~5 + [35 = O, mentioned in Theorem 3, or when they belong to the four 
hyperplanes ~4 = O, ~5 = O, [34 = 0 and [35 = 0; the curve is non-singular everywhere 
else. When (g is non-singular, then the functions ai/ai, i+a=ai, i+a/ai+3 are 
meromorphic o f  order 2 on ~r and the following inequality ~a~sps- 4._ 2 02 - -  P3t~4.P4.04.-2 02 :# 0 
holds. 

Proof. Putting U = 1 excludes at most a finite number of points as otherwise 
would be degenerate. Then P3 (Y, Z, 1) = 0 defines a double cover of the Z-plane 
ramified over the zeroes of the quartic discriminant R (Z) of P3, for which we 
provide two alternative expressions 

R ( Z ) =  1-I [ ~  z 2 - ( g  +2e[34~5)Z+[3~] 
~=_+1 

= 1-I [ ~ , ( z -  1) 2 + ( ~ , + ~ + [ 3 ~ - p ~  - 2~[34-~) ( z -  l )  + ( ~  - ~[34-)~]; (1) 
e = •  
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the roots of R (Z) are given by 

Z 6 ~ = ( 2 c t E ) - l [ d + 2 e / 3 4 a s + 6 V / ( E + 2 e / 3 4 ~ 5 ) 2 - 4 a  2~2~ with 6 = + 1 ,  , 4/~ J~ --  
/330~31 _ 2 0 2 , - 1  = - (~4P3) ( / 36 -  5/33/3,0 (~6 + 6ea3~ts), using 7. and 4. (Table 1) 

to replace d (in that order) 

/33(f16-fi/33/34) using 2 2 "~- 0~4/33 = (a6  - -  0~3 aS)  (0~6 -~- ~30~5) (see 1. in Table 1), 
a3 (~6 - '~ea3 ~4) 

proving the first part of  Lemma 3. 
When does a pair of  roots coincide? Notice that Z1, , = Z_I, , for e = + 1 or - 1 if 

and only if the discriminant 

(~ + 2 /34g~5)2  2 2 
- 4~t4/35 

= (a4 +/34 +/35 - ~as) (a4 +/34 - /35 - ~ 5 )  ( ~ 4 - / L  +/35 + e~s) (~4 - / 3 4 - / ~ s  + eas); 

of one of  the quadratic factors in R ( Z )  vanishes; this occurs on the eight 
hyperplanes in C 4 mentioned in Theorem 3. Also Z~, 1 = Z~_I if and only if 
fl4cq/35 a4 = 0, using the above expressions for Z~,~, combined with the identities. 
In particular, when ~5 ~ 0 or /34~ 0, we have that Z~, 1 = Z~,_1; when/35 ~ 0 ,  
Z-L~ = Z-L-1 = 0 and when ~4 ~ 0, ZI,~ = Z1,-1 = ~ .  Thus the curve ~g is singular 
precisely on the twelve hyperplanes given in the lemma. 

Finally, the functions ai/al, i + 3 = % i + 3/a~ + 3 are rational in X, Y, Z, U and can 
therefore be viewed as meromorphic functions on U. We now check they have order 
2, for i = 3 for instance, the two other cases i = 1,2 being similar. Solving the 
quadratic equation Pa (Y, Z, 1) with regard to Y shows that the meromorphic 
function 

a6 r + ~ z + fl~ 
a36 0~36 Z--~/336 

on cg has poles at Z = 1 and Z = - fl36/0~36 only. Then from the second expression 
(1) for the discriminant R ( Z ) ,  we have the estimates 

a6 ~2 _/32 [ 1 _+ 1 
a3~ -- 2(~36 +/336) ~, Z-~i - )  + 0 (1) near Z = 1 

• 4 . 2 o 2  R4_ 2 o 2  
30~5 p5 - - / . , 3 ~ 4 P 4  l 'k" 1 /336 + O(1) near Z = - - -  (2) 

2(X36(C(36 "l-/336) ( t z36Z '~-  fl36) (~36 

(where + refers to the + sheet); it shows a6/a36 has simple poles at Z = 1 and at 
Z = --/336/0~36 on the + sheet only, provided the leading terms in (2) differ from 0, 
or ~ which is generically so, in view of  Theorem 3. Therefore a6/a36 has order two 
generically and hence always, as long as the parameters ~, 13 stay away from the 8 
hyperplanes given in Theorem 3; there we also observed that ~ f l ~  - -  F'3R40~2 R24F'4. ---- 0 
holds on the 8 hyperplanes only. This concludes the proof  of  Lemma 3. 

Remark .  From equation 6. (Table 1) it follows ~3 4: 0, when qr is non-singular and 
by symmetry also/33 ae 0. 
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Lemma 4. Let the elliptic curve ~ be non-singular and let 2 2 2 2 +f16c% 0; then r f15 :# 
there exist three points pl ,p2 ,  P3 ~ ~r such that the meromorphic functions al, ai + 3, 
ai, i + 3 (1 _-< i < 3) on c~ satisfy 

a36 ~ . a36 
a14al (P2)= (P3), ~ 2  (P3)=  ~ 2  (PI), ~-3 tP l )= ~-3 (P2) (3) 

with ai, i+ 3 ~ 0 at Pl ,P2,P3 ~ c~. 

Proof. Before proceeding to the actual proof, consider the roots Q = O-+ and a = (7_+ 
of the quadratic polynomials R and S defined by 

2 2 2 2 - 2  R(Q)  ~-- Q2 + 2536 e -F ot3fl 3 ((~2fl2 + f160~4)f15 = 0 

S ( ( 7 ) . . a _ ( 7 2  2 2 2 2 2 2 - 2  - -  2f136ff + Ct3fla(~6f15 + = 

deafly the roots are related as follows 

f136(Q+ ~- Q - )  + O~a6 ((7+ -~ (7 - )  = 0 
(4) 

(TT- Q q: - -  (7_+ Q+ = 2(~36(7 + + fl36 QT--) = 0C36 ((7_+ - -  fiT-) + fl36 (Q:t: - -  Q_+ )" 

The independent terms of  R and S do not vanish, by assumption and upon using the 
remark at the end of  Lemma 3 and the inequalities of  Table 1, the discriminants of  
R and S have the form 

2 2 4 2 2 4 2 2 2 2 4 2 2 4 2 2 -4 f13~4 . (~3~s f l s  - 4Ct3 f15 (0~3 t~5 f15 --  f13 (X4. f14) and 

and do not vanish, since ~ is non-singular (by virtue of the last statement in 
Lemma 3). Hence we have the inequalities 

0 + Q - ~ 0  (7+(7_ ~:0 q + - Q _  ~:0 (7+-(7_ ~ 0  
(5) 

2(Gt36 (7_+ + fl36 Q+) = 0"T- QT- - -  (7-+ Q-+ 5t= O; 

the latter inequality holds because, in view of (4) 
2 2 

0C3fl3 / 4.N202 4- 2 2 2 2 2 2 
(~6 f14. +/~6~4.)  0 ,  ~ 6  ((7-+ - (7 T-)2 _ fl~6 (e-+ - a ~)~ = ~ ~ ~ p~ - / h  ~d~4.) * 

(x4P5 

again by the hypothesis and by the fact that c~ is non-singular. 
Proving the existence of  three distinct points Pl,P2,P3 ~ satisfying (3) 

amounts to finding Pl ,P2,Pa ~ ~g (i.e., satisfying H~ (P0  = Hi (P2) = Hi (P3) = 0, 
i = 1,2, 3) such that 

a4 (P2)= a4.  (P3), a~5 (/93) = a ~  5 (Pl), a__~6 (p~)= ~a66 (P2)- (6) 
a14. a14 a36 

In terms of  the coordinates (X~, Y/, Z i, 1) ofpi  e IP a, the relations (6) amount to a 
linear system of  equations in X~ and Y~, with coefficients depending on Z~ 

D X 2 = 0 

X3 0 , 
(7) 

[ I 11 ]  [ (Z6f16(~3f16-Oc6f13)(z2-Zl) ] 
D r~ = ~ ( z ~ - z ~ )  1,  

Y3 ~2 (Z 2 _ Z3) j 
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where 

with 

D =  [ -(oc36Z2--~f136) oc36Z1--~-f136 0 ] 
- Z 3 0 Z 1 

o - 1  1 

A = det (D) = Z 3 (0c36 Z 1 -1- fl36) -- Z1 (~ Z2 + fl36)" (8) 

By formally substituting X i and Y~ in terms of  Z i obtained from (7), the equation 
Hi(pz ) - H i ( P 3 )  is automatically satisfied for i =  1 and leads to an equation 
for i = 2 :  

H2 (P2) - H2 (P3) = A - 1 ~2(Z 3 _ Z2)2 [Z 3 (0~36 Z1 _~_ fl36) -]- Z1 (0~36 Z2 "31- fl36)] = 0; 

upon setting 

Z3 (~36Z1 ~- fl36) -]- Zl  (0~36 Z2 "q- fl36) = 0, (9) 
we get the following relations, involving the polynomials R and S introduced in the 
beginning of  the proof  

(2  (0~36 ZI  "1- f13 6) ~ 0 Ht(pa)=fl~A-2Z2(Z2-ZO2R\ - ~2-2 ~ ~ -  ~ ] =  (10) 

and 
(2Z3  (0~36 Zl  -'[- fl36~ H2(P3)=~2 A-2 Z2(Z2- Z1)2 S \ ~2-_-~T ~ / = 0 .  (11) 

The remaining relations 

Hi  (P2) = He (PE) = Hi  (Pl) = H2 (Pl) = 0 

are then automatically satisfied, because upon eliminating XI, I71, Z1, we have 

nl(pl)='nl(p2) and (0~36 22 -']- fl36 x~ 2 
\0~36 Z3 ~---~36 j H2(Pl)=H2(P2)" 

For the points Pl to be all distinct with al, g + 3 4: 0, and in order to solve the linear 
system (7), we must impose the inequalities 

A :#O,(ZI-Z2)(Z2-Z3)(Z3-Z1)~i=O, Zi~=O and o~36ZiJl-f136:~O i=1 ,2 ,3 .  

(12) 

The problem now reduces to finding three points Pl ,  P2, P3 satisfying the relations 
(7), (9), (10), (11) and the inequalities (12). 

In view of the discussion about the polynomials R and S at the start of  this 
proof, the expressions 

2(0~36Z 1 -4- fl36) 
Z 2 - Z 1  - Q• and Z 3 Q • 1 7 7  (13) 

with the relation 

Z3 (0~36Z1 + fl36) = - Z1 (~36Z2 "~- fl36), (14) 

provide a solution to (9), (10), and (11), and in turn 

21 tr+ 0":t: O'+ -- - Z 2 = - ,  Z 3 = - -  (15) 
Q~:' Q• Q_+ 
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provides the solution to (13) and (14) upon using the relations (4). The inequalities 
(5) imply at once that the Zi (i = 1,2, 3) are non zero and all distinct. Then (13) and 
(14) imply 0~36Zi'~-f136 tit= 0 for i =  1, 2 and (5) implies that inequality for i =  3. 
Therefore also in view of (8) and (14), we have A 4= 0. As a result the systems (7) 
have a unique solution X1, X2, Xa, I11, Y2, Y3. Thus the coordinates of the 3 
distinct points Pl ,P2,P3 ~c~ have the required properties, ending the proof  of 
Lemma 4. 

Theorem 5. Let the elliptic curve ~ be non-singular, then after an appropriate change 
of  coordinates x r-xz, the space V can be spanned by a "simultaneously 
diagonalizable" basis 

2 2 __ C l Z 2  0.1 = z~ + z2 - z3 

2 2 __ C2 Z 2 0.2 = z~ + z~ - z l  
= 2 2 _ c3z2 (16) 0.3 z~+zl-z2 

Q 4 = a z l z 4 W b z 2 z s + c z 3 z 6 - c 4 z 2 ,  with a E w b E W c 2 : 0 ,  a b c = l ,  

depending on four parameters a, cl ,  c 2 and c 3; c 4 can be made 1. The curve c~ of  rank 4 
quadrics has, with regard to this basis, the following f o r m  

~: - a 2 Z~) 1 + (b 2 Z + c 2) Q2 + Z (  b2 Z + c 2) Qa - 2 W04 

W z l + a ] / ~ z  * + b ] / Z ( l _ Z ) z  2 I / Z ( 1 - Z )  z '  

W 2 
- l - ( c r  - - c ( Z , W ) z  2 , (17) 

where 

W 2 = Z(1 - Z ) ( b 2 Z +  c 2) 

and where 

c ( Z ,  W )  = - a 2  Z c l  + (b2 Z + C2) C2 At- Z(b2  Z + C2)C3 --  2Wc  4 

is a meromorphic function on qg. Moreover c~ contains four collinear points 
p~(1-< ot __<4) corresponding to four rank 3 quadrics Q.(p~) (i.e., with z 2 missing) 
having the property , 

1 

The affine intersection I =  :~ {Q~ = O, z o = 1} supports two commuting vector fields 

XI :  z l  ~ a z 5 z 6  

Zz = bz6z4 

z3 ~ cz4z5 

z4 = - bz2 z6 + cz3 z5 

Z5 = -- CZ3 Z4 + az l  z6 

z6 = - a z l  z~ + bz2z , 

X2: z 1 = a z 2 z  3 

z 2 = c z4z  6 + a z l z  3 

z 3 ~ - b z 4 g  5 + a z i z  2 

z 4 = - c z  2Z 6 - b z  3z 5 

zs = bz3 z4 

Z 6 = CZ 2 Z 4 
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The quadrics Qi in (16) provide the set of invariants for the geodesic flow Xn, given by 
(4.2); in the left-invariant metric H the 2~ and 2hi+3 satisfy (see [4, 5]) 

A14 = A25 ~--- A36 and ,~.24 A32 + 225 A13 + .,~26A2t + A32 At3 Azt = O. 
(Manakov metric). (18) 

Proof. We first assume ~62 f12 2 2 '[- 1~6 0(4 =~ 0; then, at  any  point  on U and in par t icular  
at the p o i n t s p l , p z , p 3  ~ U found  in L e m m a  4, the relat ions aiai + 3 = a2i § 3 hold and  
hence the cor responding  three quadrics  Q ( p l ) ,  Q(p2)  and  Q(P3) have the fo rm 

Q= a i Xi--] - a i ' i + 3  x i +  3 
i=l ai 

with a~ and  ai+3 evaluated at  P t , P 2  and P3. Observe  that,  f rom L e m m a  4, 

a14 az4 a25 i a14 ~ , 
a t (/92) ----" a--l- (/03) * ~ tel) ,  a25 a25 a~- (P3) = a---~ (Pl) * ~ tP2), 

a3~6 (Pz) = a3--'~6 (.P2) 4= a36 (373), 
a3 03 aa 

the inequalities holding because otherwise the m e r o m o r p h i c  funct ions ai.i+3/a i 
would have at  least o rder  3 which has  been ruled out  by L e m m a  3. Also the ai are 
nonzero at  p l ,  P2, P3, since there ala~ + 3 -- a2 4: 0. Therefore  it follows, at once, i , i+3 
that the linear m a p  y = Lx 

L= 

al (p3) t/2 a14(p~)al (p3) -1/2 0 0 0 0 
al(pl) 112 at,(pi)al(pl) -1/2 0 0 0 0 

0 0 a2(Pl) 1/2 a25(Px)a2(pl) -1/2 0 0 

0 0 a2 (p2) 1/2 a25(p2)a2(P2) -1/2 0 0 

0 0 0 0 a3 (p2)1/2 a36 (02) a3 (/02)- 1/2 

0 0 0 0 a3 (p3) 1/2 a36(P3)a3(P3) -1/2 

maps Q(pl),  Q(p2),  Q(p3)  into 

Q(Pa) = Y] + y2 + a3 (px)aa (p2) - x ya2 -= y42 + y22 + aa, y2 

Q(P2)= y2 + yZ + al (p2)aa (p3) -I  y12 = ys2 + ya2 + a~' y2 

Q(p3)=yZ + y2 +a2(p3)a2(pO-Xy 2=y62 + 2 - a ' " 2 t  2y2, with 

(19) 

a~ :t: 0.  

Carry ing  out  the p r o g r a m  o f  L e m m a  4 and  implement ing  the linear m a p  L, 
yields the basis o f  (16) in terms o f  the basis N F I :  Qi(x) - c~x 2, i = 1 . . . . .  4. Indeed 
the change o f  coordinates  x ~ z and  the values o f  a, b, c, e l ,  c2, c3, c4 are specified 
below: 

z , =  ]//~-~(x,+b+x,+3), z , + 3 =  ]/ /~-(x ,+bi-x,+3),  i = 1 , 2 , 3 ,  
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with 

a~ = - a~ ( a ~  + / h ~ )  + u,  

ai- = - a~ ( -  V), 

b + a~- = f14(-a36 -~- U), 

b~- = b~ ( -  U), 

a3 U =  i-~s W, 

and 

a =  ia ,  fl4fl~, 

cl = c ( -  U, V),  

with 

and 

M. Adler and P. van Moerbeke 

a~- = - fl~ (~36 "q- f l36)  "~ V, 

a~ = a~ ( -  V), 

b~ a~ = a s ( -  fl36 "q- V), 

b~ = b~ ( -  V), 

V = f l 3 W ,  
a4 

a~ = - fl~ U -  a i V, 

a~ = a~ ( -  U, V) 

b~ a~ = - a36 V -  fl36 U, 

b~ = b~ ( -  U/V), 

W 2 _0~2 2 4 2 2 = /~5 a~ + a,/~41?~ 

b =  - ~ 5 f l 5 ~ ,  c =  W, 

c2 = c(U, - V), c3 = - c(U, V) 

2 r r  (f12 0~36 a3 f136)C l -~ - ( - - f l l  2 2 2 , ~. -- U-+-a4 V-~- f16a36- -a6 f136)c2  

"~- (fl36 - -  V)ct3 -- (~36 - -  U ) c 4 ,  

2 2 

C4 ~- 2 2 [ l ( a 2  + a52 _ f 1 2 _  f12)(a2f12 c1 - a36 f136c~) -  

2 2 //0~36 , fl36 , x 
~- ( a4 f136 ~- f15 ~ ) ~--~4 C3 -- ~ 5  C4 ) 

Therefore assuming 2 2 2 fl6~4 :~ 0, have shown the existence o f  three ~6fl5 + we 
independent quadrics of  the general form (16). 

2 2 2 2 Next assume a6fl 5 + f16a4 = 0; this relation combined with Eq. (2) of Table 1 
enables one to express a32 and f12 and hence a6 z and fl~ as rational functions of 
~2 _ 2 02 4,~s,p4,fl~; it also implies that the right hand side of  10. (Table 1) vanishes, 
leading to two cases: 

(i) aa f l6 -  ~6fl3 = 0; squaring this expression and using 3. of  Table 1 and the 
expressions for a~ and fl~ (alluded to above) imply 2 2 2 f14 + f15 - a4 - a~ = 0. Upon 
substituting these expressions into the basis NF  1 of  V, we find 

=~,x ,+(x~+~,xW + . . - r - ~  x3+ l / ~ - ~ x o  ; 
if'4 -- f15 

upon dualizing Q3 and upon using fl~ + fiE -- Ct,~ -- e~ = O, we get 

Q ' = ( x ,  +fl4x'*)z +fl~x~ otea_fl~ x a +  V ~ 5 ~ f 1 2  X6 ; 

consider also 

2 2 ~,,[3,Q2 fl~Q3 - ct]Q,~ = - a ] ( x  1 +f14x4) 2 - f l~(Xz+esxs)  2 + .2 o z . . 2  - -  ~ P5 ~6  �9 

The two first quadrics have the x3, x6 piece in common, the first and third the x2, x5 
piece and the second and third the x l ,  x4 piece. Thus, after some minor rescaling 
they have the form of  the three quadrics (19). 
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(ii) a6 z (~3fl6 - 0~6fl3) -~- ~ 2 ( ~ 3  f16 + ~ 6 f l 3 )  = O; this equation and identities 1., 
3. and 4. of Table 1 imply ( ~  + ~ )  (fl~ - fl~)2 _ (fl~ + fiE) (a~ -- ~)2  = O. Upon 
renaming x~ = x~+ 3 and x~+ 3 = xi and upon taking into account the inequalities 
~ - ~ ~: 0 and fl~ - fl~ • O, one checks that 

O~ = ( ~  - ~ ) - 1  [Q~ + ~ I  ( ~  - ~ )  -~  Q~ - ~ Q~] 

= ~ s  ' ' ~  . . . .  ~" " [ - ~ 5 X 5 )  "~-(O~3X 3-~-0~6X6) , 

and by dualizing, 

O~ (x l  ' ' ~  ' '~ , , R, , ~  = "~f14X4)  "q-fl5X5 " [ - ( f l 3 X 3 A v I J 6 X 6 j  . 

In the expressions above, 

,2 2 , . 2  . 2 , - 2  ~;2 ~3 ~, 

,2 2 -  2 .2~.--2 0~2 0~2(0~2 ~ I ) - - 2  ' Ct5 = ~5 ~,0~5 - -  ~t4) , = 

with dual expressions for the fl; in terms of the fig. Observe now that the ct~ 
and fl~ satisfy the relations of  Table 1 (Case2), besides e'3fl'6-ct'6fl'3 = 0  and 
fl[2 + fl;2_ e~2_ ~;2 = 0. This is to say that case (ii) brings us back to case (i). 

Having shown that, in all circumstances, the elliptic curve cr possesses three 
points corresponding to three independent quadrics of the form (19), there exists a 
fourth quadric Q (all together spanning V) of the following form, after knocking off 
y2, y2 and y2 with Q(Pl), O(p2) and Q(P3): 

Q - d l y  2 + d2y 2 + day 2 + 2(bly~y4 + b2Y2Y5 + baYaY6). 

Of course, the span V =  V ( Q ( p l ) ,  Q(p2), Q(p3), Q) must still contain the same 
non-degenerate elliptic curve cg. Then expressing the linear dependence of the three 
cones H i -- 0 (with regard to the coordinates of the basis just mentioned), yields 

= = = ' ' ' b la  3 - b 2 a l a  3 - b ~ = O  d 1 d 2 d 3 O, a l a 2 a 3 + l = O  and 2 , 2 , , 

with all bl, a~ ~ 0. Using the rescaled variables z i defined by 

(Y~, Y4, Y2, Ys, Y3, Y6) -- (z~, l/a~ a~ z4, 1 / ~  a~ z2, 1 , / - -~  zs, t / - - ~  z3, z6) 

leads at once to the four quadrics (16). With this notation, one easily checks that the 
curve of  rank4 quadrics has the form (17). It contains exactly 4 points 
corresponding to rank 3 quadrics; this happens whenever c(Z ,  W) -- 0, i.e., at the 
four intersection points p~ = (X~, . . . ,  U~), 1 < ~ < 4 of the hyperplane 

( c , p )  - c l X +  c 2 Y +  c a Z +  c 4 U =  0 

with the elliptic curve c~. Thus (c,p~> = 0 for ct = 1 . . . . .  4 and as a result the four 
points p~ lie in a hyperplane, i.e., ~ 2~p~ = 0 for some 2~ e Ir. Then we have that 

4 4 

1 1 

---~0. 

Absorbing 2, into Q (p~) leads to the announced result. 
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Consider the geodesic flow mentioned in the statement of this theorem. Then 
perform the coordinate change x r-,. (Xu) l_~iaz4 e so(4) defined by 

x , j  = ~(x~ + x~+ ~), x , ,  = ~(x,  - x , ) ,  

where the (i,j, k) are the cyclic permutations of  (1,2, 3). In these new variables, the 
geodesic flow becomes 

3H 
Xn: X = I X ,  if-X], Xeso(4) 

for the metric 

H(X,~,~)= ,Z (#'-~)x~,  
1 ~_ <4 ~ "J ~ 

this form being a consequence of  the relations (18) on the metric. Observe that 
whatever be the values of  the fli, the quadrics H(X, a, r) are invariants of  the same 
flow. In particular, taking limits for fli 1" oo, we find that the invariants of  the flow 
above are given by the quadrics 

Qi = lim H(X, ~, 8) (1 < i < 3) and Q4 = 1/determinant (x ) ,  
#d ~o 

which upon an obvious rescaling leads to the quadrics (16). The vector fields X1 and 
X z are Hamiltonian flows X n above for H =  Q1 + Qz + Qa and H = Q1 
respectively; thus they commute. This ends the proof of Theorem 5. 

Theorem 6. Consider the elliptic curve ~ of rank 4 quadrics, as before. Then after an 
appropriate change of coordinates x c'~ y, an alternative basis for V has the following 
form 

6 

0.'1 = E y~ 
1 

3 

Q~ = 2 E yiyi  + 3 
1 

3 

O-'3 = Z (b,y~ + b~- l y~+ a) 
i=1  

~, ~ ( y2 YiYi+3 . K 2 Y/2+3 Q4 = ,_, L 2 t- 2KLb 4 
i=1 b 4 ' - b i  -1 b~-b4 • b~-~4] K2YZ~ 

with parameters b 1 , b2, b3_, b, = bl bzba and K/L; notice Yo = Zo does not appear in 
Q~ ( =< i < 3), but only in Q,. The b i are all distinct and different from 0 and 1. With 
regard to this basis, the elliptic curve ~ is a double cover of  the X-plane ramified at the 
4 points linearly equivalent to 

biK b4L 
b4L + ~ j K  , j =  1,2,3,4; 

and the 4 collinear rank 3 quadrics (alluded to in Theorem 5) on cg are given by 

~.i + Q~; and 0.'3+ Q~. 
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The aff ine variety I = ~ { Q.~ = O, Yo = 1 } supports  two c o m m u t i n g  vector f ie lds  X 1 and  
X2g i ven  by 

Yl 

Y2 

Ya 

Y4 

�9 Y6 

and 

Yl 

Y2 

Y3 

Y4 

Y5 

�9 Y6 

= K  

265Y6Y5 

246Y4Y6 
254YsY4 

26Y2Y 6 -- 25yay 5 

24YaY4 -- 26YlY6 

25YlY5 -- 24YEY4 

L 
-v, 

23Y3Y 5 -- 22Y2Y 6 

21yly  6 -- 23YaY 4 

22Y2Y4 -- 21YlYs  

232Y3Y2 

213YlY3 

~21YEYl 

= K  

2~sY3Y2 

2 ; y 3 y  1 -- 2~y4y  6 

2~Y4Y5 -- 26Y2Yl  

2~y2y  6 -- 2 ; y 3 y  5 

2~4Y4Ya 

2~6Y2Y4 

2~yay  5 -- 2~y2y  6 

221YlY6 

~13YsYl 

2;2Y6Y5 

2~Y4Y6 - -2~YaYl  

2~y2y I -- 2~y4y 5 

where 2ij =_ 2 i - 2j and  2~j =- 2~ - 2j, with 

1 1 1 1 
2 i = b ~ l _ b : ~ a  ' 2 i =  b ~ - l _ b ~ - l ,  2 i + 3 - b , ~ _ b  , 2i+3 b 4 _ b l  

and (b~, b~, b~, b~) = (b4, b2, b3 ,  b l ) .  

Proof. From Theorem 5, there are four collinear points p,  on ~ such that 

3 
Q.(p,)  = ~. (a , (P,)Zk + a,+a(p~)zk+3) 2 

k = l  

with ~ 0(P , )  - 0. For  each k, define Yk, Yk + a, bk, b'k, dk, and d~ such that 
~t 

Yk --Yk+a = ak(POZk + ak+3(Pl)Zk+3 

i(yk-~-Yk+ 3) = ak(pz)gk  "}- ak+3 ( P 2 )  Zk+ 3 

bkYk + b'kYk + a = ak (Pa) Zk + ak + a (/73) ZR + 3 

i (dky k + d'ky k + a) = ak (P4) Zk + ak + 3 (P4) ZR + 3, 

which can always be done for a generic choice of  constants ci, appearing in (16). 
Expressing the fact that ~ Q (p,) = 0 yields, for every 1 _< k < 3, 

(Yk -- Yk + 3) 2 - -  (Yk "l- Yk + 3) 2 -~ (bkyk q- btkYk + 3) 2 - -  (dkYk q- d'kYk + 3) 2 ~ 0 

leading to 
b 2 = d 2 , b'k 2 = d'k 2, 

bkb' k - dkd'  k = 2, 
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implying b~ = b k 1, dk = b k  ' d, k = _ bk 1. Hence the 4 collinear quadrics take on the 
form 

3 3 

{J(Px)= ~ (Yk--Yk+3) 2 ~)(P2) = - Z (Yk+Yk+3) z 
k=l  k=l  

3 3 
~)(P3) = E (bkYk+bklyk+3) 2 Q(P4)  = -  E (bkyk--bkaYk+3) 2" 

k=l k=! 

For a generic choice of ci, we have that all b k 4: 0, + 1, distinct and different from 
b4 = bl b2 b3. Taking appropriate linear combinations of the above quadrics leads 
to the first three quadrics ~' " Qi (z = 1,2, 3) of  Theorem 6. 

In order to complete the basis of  7 of  Theorem 6, we need to find a fourth 
quadric a-, Q4, which (without loss of generality) has the form 

3 
2 2 0.4 = ~ (dlY 2 + 2dl, i+ 3YlYl,i+ 3 + d,+ 3Yi+ 3) - cY 2. 

2 

Expressing the fact that V contains an (elliptic) curve ~ of  rank 4 quadrics, i.e., that 
the polynomials H~ (X, Y, Z, U) are linearly dependent, we find after some row 
operations that 

(b2+bz l - b l - b ~  1 d2+d 5 dsb2+d2b21 dzs d2ds-d25"~ 
rank 

b 3 q - b g l - b l - b ;  1 d 3 + d  6 d6b3+d3b3 1 d36 d3d6-.36,/=I"A 2 ] 

Comparing the columns with the first one, leads to expressions for d2, ds, d~s, and 
d26 in terms of d3 and d6. Letting 

K z = blb2ba(d6b3(b z -b l )+d3(blb  z -  1)) and L 2 = d6b3(blb 2-1)+da(b 2 - b 0 ,  

solving these expressions for d3 and d6 in terms of  K 2, L z, and b~, and putting them 
into the formulas for d2, ds, d~5, and d326 lead to 

a J  - -  . L 2 K 2 K 2 

4 - ( b 2 1 - b 2 1  I -b~-b l )Y2  +(b-[ L2 1 - b ; 1  b~--b2) y2 

+ 2 K L  b'~(bl-b11) 
(b a _ bl ) (b 4 _ b2 ) Y2Y5 

1_ K2 L 2 K 2 
+(bjlL~2_b~a b~_b~)Y2 +(b~l-Zb21 b,,~-~3) y2 

+ 2KL b'*(bl -bZ1)  
(b2 - bl) (b4 - ba) YaY6 - y2. 

Since the quadrics ~9~, - '  - '  Q2, and Qa are invariant under cyclic permutation 
Y l ~ Y2 ~ Y3 r Y l , Y4 c~ Y s c',. Y6 ~ Y,, and bl c", b 2 t-'l. b 3 r-~ bl,  the space Vspanned 
by the Q~ contains besides Q~ two other quadrics, obtained by cyclically permuting 
the indices. Then summing up these three quadrics leads to the quadric Q~ 
announced in Theorem 6, while the rest of the statement follows from a 
straightforward but lengthy computation, ending the proof of  Theorem 6. 
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6. Intersection of Quadrics, Abelian Surfaces, their Moduli and Geodesic Flow on 
SO (4) for Left-Invariant Metrics 

The punch line of  this paper is Theorem 7, which we state and prove in this section. 

Theorem 7. The moduli for the intersection of four quadrics having the form 

2 2 (y2 X 2 .~ Yi +3 Xi + 3 "}- 2 Yi.~ +3 X~ X, +3 ) -- ex~o = O, 

satisfying conditions C O, C 1, and C 2 and having a non-degenerate curve of rank 4 
quadrics in their linear span breaks up into two pieces: the moduli of abelian surfaces of 
principal polarization and polarization (1, 2). The affine intersection I of  the quadrics 
can be completed into an abelian surface A by adjoining to I a divisor D, which can be 
viewed as an 8-fold cover of cg in two different ways, as indicated in Fig. 3. The 
representation of cg as a curve of rank 4 quadries is obtained by substituting the 
quadrics Qi of Theorems 4 and 5 for c i in the expressions e ( Z, W). The moduli for each 
of the cases are given in terms of the quadrics Qi in Theorems 4 and 6, as follows: 

Case 1 Case 2 

hyperelliptic Jacobians [ 
A = Jac (D) 

moduli: cl/c4, c2/c4, ca/c a 
D: U 2 = c(Z)  

Prym variety A = Prym (D/C~) (polarization (2, 4)) 

moduli bl, b2, b 3 
D: {cg, U 2 = c(Z, W)} 
[/~] ~ 8-fold unramified 5 cover of W 
aft: V 2 = Z ( Z -  b O ( Z -  b 2 ) ( Z -  b a ) ( Z -  bl b2ba) 
Jac(~g f)  is a double unramified cover of A. 

Proof. According to Theorem 1, the curve ~ =  dr' is a four-fold cover of  c~; it is 
unramified, because : 2 2 2 22/Z 3 have a on z l / z  a and divisor cr divisible by 2; the latter 
follows from expressing (2.1) in terms o f  the curves o f  rank 4 quadrics appearing in 
Theorems 4 and 5. Also from Theorem 1, i has a normal crossing along dr which 
upon normalization turns dr into the cu rve / )  = {dr, U 2 = c(Z, W)}. 

In case 1, i ~ {z o = 0} = dr + drc, dr = 4 lines C 1 and drc = 4 lines (?2, where dr and 
r intersect according to Fig. 4. The surface Ihas  a normal crossing along r and is 
smooth along drc. Blowing up [ along dr and blowing it down along dr~ lead to the 
desired abelian surface with a divisor/~, consisting of  4 isomorphic hyperelliptic 
curves. In Case 2, i must be blown up along dr= [c~ {x 0 = 0) to yield an abelian 
surface carrying a smooth curve o f  genus 16. 

The proof  of  these statements is based on arguments in [5], which we 
now summarize. The set of  quadrics in Theorems 4 and 5 supports the two 
commuting vector fields X 1 and X 2. Then X 1 admits a family of  Laurent 
solutions z ( t ) =  t-1 (ztO)+ zt~)t + . . . )  with simple pole, parametrized by/~. After 
reduction by the invariants and upon substituting the Laurent  solutions, the space 

"~ [/~] denotes the linear system of/~ 
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Case 1 
[ 4 hyperelliptic curves ] 

IP is ~A = Jac(D)zz/~= ~ interse;tiTgsin 4 ordinary 7' g(/~)= 17, 

ramified/ 2-1 4-1 ~unramified 

. /  \ 
g: {4 17nes} ; :  c cg c c c i= chYrvtXrelliptic 

unramitled ~ / ra~e~fied at?:nd6 L o i n t s ~  / 

~r = {line: W= Z} 

Case 2 
IPV~A=Prym(D/C~)~D={x2=I_D, y2=z}, smooth, g(/~)---- 9 

ramified 4 ~ ~  = unramified 
over 16// X x 

' 0  7 
: r  ~ ~ I  ~ ~ ~ I r (x~=l-z, r~=zJ D= {v~=c(z,w)=-a Z~ +(b Z+c )r 

/ [  +Z(b~Z+:)c~-2wc" J 

unram~i0,, \ , , - ,  ~ - ' /  rami'iediats4por, t U=O 

c~: W 2 = Z(1 -Z)(b2Z+ c 2) 
Fig. 3 
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-/" 0 r ~ '~'~ 
(. 

r 

c I ( I , -~ )  

c I (-~,-I) 

Fig. 4 

of polynomials in z x . . . . .  z 6 having a simple pole is spanned by 16 functions 1, 
zl . . . .  , z6 . . . .  , zx s in Case 1 and the 8 functions 1, z 1 . . . . .  z 6 and z 7 - bz 1 z4 - azz zs 
in Case 2. These functions and their residues at t = 0 map the affine surface l a n d  the 
divisor/~ smoothly into IP u, where N = 15 and 7, respectively. One then shows, with 
effort, that the trajectories of  the vector field X x issuing f rom/~  form a smooth 
surface strip a round / ) ;  this procedure is used to glue the curve/~ onto the affine 
surface/,  yielding a smooth surface A embedded into IP N. The complex Arnold- 
Liouville theorem and the existence of  two commuting vector fields imply that A is a 
complex torus carrying the divisor/) .  The functions 1, zl . . . . .  z N defined above 
generate L (/~), in addition to embedding A into IP N. Hence by Chow's theorem, A is 
an Abelian surface with very ample divisor/~. Its period matrix can always be given 
by 

(~1 0 a c )  ( :  ; )  
6 z c b ' Im >0 ,  6 i~Z ,  61162 

with 6162 = g ( / ~ ) -  1 = N +  1, leaving only a few possibilities for (61,62). Then 
(fix, 62)= (4, 4) in Case 1, and = (2, 4) in Case 2, by counting the even sections 
(0-functions) of  the line bundle associated with/~. 

Since, in case 1, A contains a divisor/~, consisting of  4 isomorphic hyperelliptic 
curves D, we have that A = Jac(D). To see that in Case 2, A = Prym (D/C~), we use 
the flows X1 and X2 of  Theorem 5, and the differentials dt 1 and dt 2 defined on A by 
dti (Xj) = 60; dt 1 and dt 2 restricted to the divisor/~ turn out to be odd holomorphic 
differentials ~o~ and co 2 on the curve D. To actually obtain these differentials, we 
pick two coordinates z~ and zp, viewed on A as functions of  t~ and t 2. 
Differentiating 1/z, and za/z, with regard to the vector fields X 1 and X 2, yields 

dt~ 

dt2 
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Then substituting the Laurent solutions in the above and evaluating the result at 
t = 0, we obtain the two holomorphic differentials (01 and (o 2 . The oddness of  (0i 
and the decomposition 

Jac (D) = Prym (D/~) @ 

imply that A is isogenous to Prym (D/~). A more careful analysis involving cycles of 
D shows A = Prym (D/~); see Haine [10]. 

With regard to Case 2, we now prove that the linear system [/~] contains an 
8-fold unramified cover of  the hyperelliptic curve ~ given in the statement of this 
theorem. To do this, consider the quadrics Q~ of Theorem 6 expressed in the 
coordinates y. Inspired by K6tter [14, 15], we consider the following function 

f - ~  Y23 
b~ - b,  

in L (2/~); notice this expression appears explicitly in the quadric Q~. We now show 

( f )  = - 2L~ + 2 (8-fold unramified cover of J r ) .  

Consider the curve 
4 

Do - N {Q~ (y) = 0} r~ { f =  0}. (1) 
1 

The following expressions 

Y i + 3 = Z r  /b4,-b~ V 
q tp (bi) Y' = y' + 3 ( X -  bi) ( X -  b,,) ]/X (2) 

provide a solution of  the equations defining Do, in which 

K )  X -  b 4 
Z 2 = c- 1 (c rational function of bi) 

X ' 
3 4 

~0 (u) = I-I (u - bl) and V 2 = X1- ] ( X -  bi). 
1 1 

(3) 

The main tool here is Jacobi's wonderful device, which consists of evaluating the 
contour integral 

~R(u) 
- ~  du, R rational 

around a small circle about u = oo. In this way, one verifies that 

6 3 3 1~3 
~,y2=Z2, ~ , y 2 = - Z 2 ,  ~,y iy ,+a=0 ,  2 . ,Y'Y'+a=0,  
4 1 1 1 b i -  b4 

3 y~ XZ 2 3 
b i - b  4 b21 bi-~=c X - b 4  ' E(biy2+b;ly2+a) =0,  

showing that (2) is a solution of (1) and thus parametrizes a connected component 
D~ of  D o. 
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Using (2), we show that D6 is equivalent to the curve Dg: 

Jx ~ (x Y4YsY6 = e - bi) : gf  ~ 

1 
( Y i Y 4 , Y z Y 5  ,Y3Y6) = 6 ] / X  

Y4YsY6 

and 

Y4Y5 = ~c 1 / ( X -  b l )  ( X -  b2) 

Y5Y6 = 2 v /  ( X  - bE) (X-- b3) 

where all equalities are valid up to multiplication by rational functions of  X and 
where e, 6, x, and 2 take on + 1 independently of  each other�9 Indeed, a point on 
D~, given by (X, e, ~, ~, 2) specifies a unique point (ya . . . . .  Y6) in D~ as is seen 
from taking appropriate  ratios of  the formulas defining D~' and conversely 
given (Yl , - . . ,  Y6) o n  the curve D~, we recover uniquely Z z, X, e, 6, r ,  and 2 from 
6 

2 Z 2 , ,, y~ = , (3) and the formulas in D~. Hence D o = D O and D O contains a curve D~ 
4 
which can be viewed as an 8-fold unramified cover of  the genus 2 hyperelliptic curve 
~ ;  thus the curve D~ has genus 9. The various sign flips associated with e, 6, x, and 2 
correspond to involutions on the curve D~ as summarized in the figure below. 

Genus 

9 

5 

3 

2 

Involutions 

D~ 
unram. $ 2 c ' x - , ~ : ( y l , y 4 , y 2 , y s , y 3 , Y 6 ) C ~ ( - y l , - y 4 , - y 2 , - y s , y 3 , Y 6 )  

~2 
unram. J. ~ c--. - x: (Yl, Y4, Y2, Ys, Y3, Y6) ~ (Yl, Y4, --Y2, --Ys, --Y3, --Y6) 
unram. J, 6c~--6:(yl,y2,ya,y4,ys,y6)c'~(--yl,--y2,--ya,y4,y5,Y6) 

~f 
ram. ~ ec~--e:(yt,y2,Y3,y4,ys,y6)c~(yl,y2,ya,--y4,--ys,--y6) 

Fig. 5 

To establish D O = D ~  and ( f ) =  - 2 D  + 2D o, we use the flows X 1 and X 2 of  
Theorem 6 and we first show that df/dt~ = 0 for i = 1,2; indeed, one checks that 

d f  o'o = ---~4 [y,~ 24232..[_~2 ,~5~13 _~3 2622111 
dtl Z _I In~ 

= -b-44 y l y z y 3  V 

�9 [ ( X -  b x ) )~423 z + ( X -  b2) 2521 a + ( X -  b3) 26221 ], using (2) 

= 0 ,  
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while 
Of I _ Of dtl 
Ot2 ,D~ Otl dt 2 v'o = O, 

showing that D~ is a double zero off.  Thus ( f )  __> 2D~ - 2D, with g (D) = g(D'o) = 9, 
and h e n c e f m u s t  have a double pole along D, establishing ( f )  = 2D o - 2D; thus 
taking the square root  o f f  shows that Do is in the linear system of D. 

Finally we show that A is isogeneous to Jac ( ~ ) .  It suffices to show, in view of 
Theorem 4 of  [5], that the holomorphic differentials coi= dt~ IDo depend on ~r  only 
and thus descend to the hyperelliptic differentials. Taking the differentials of  two 
independent functions F and G defined on A, we find 

(dt l  ~ = 1 

dt2] (OF OG OF OG) 
o t :  ot~ 

OG OF 

Ot 2 Ot 2 

OG OF 

Otl Otl 
dG 

Q1 2 2 = Z 4 + Z 2 --  Z 2 _ C 1 Z 2 

~__.2~ 2 2 z~ + z~ - z~ - c~ Z2o 

Q3 2 2 - -  .~ Z 6 -~- Z 1 - -  Z 2 -  C 3Z20 

a b c 
Q4- ---- --c4 zl z ,  + --c, Z2Z5 "~ --C 4 Z3Z6 -- Z2 

Qs = - bZl  z4  + az2 Zs + Zo z7 

Q--6 = - c 2  (cl 22 + c2z22 + c3 z2) - c,, (az t z4 + bz2 z5 - cz3 z6) - z 2 

Setting F =  Y,YsY6 and G = YlY2Y3, observe that OF/Ot~ and OG/Ot~ are functions of 
YjYj + a and y2 only, and therefore F, G, O F/O t i and 0 G/a t i are invariant under the 2 
and x involution of  figure 5. Consequently the same holds for co s = d t  i IDo (i = 1,2). 
Therefore not only are co x and (.02 holomorphic differentials on D o, but also 
holomorphic on ~ 1  (see Fig. 5). Then by Theorem 4 of  [5], we have 

A = Jac (~1 )  = J a c ( ~ )  ~ Elliptic curve, modulo isogenies 

and since A is irreducible, A = Jac (~,~), moduls isogenies. Moreover Jac ( ~ )  is a 
double cover of  the abelian surface A, as follows from the arguments in Horozov- 
van Moerbeke [25] and Adler-van Moerbeke [23]. Hence bl, b2, and b 3 form a set 
of  moduli for A, concluding the proof  of  Theorem 7. 

Remark. An exact computation shows that 

( X -  bl) dx ( X -  b4) dX 
col = dtl Ioo = V ' ~~ = dt2 lDo -- V 

This shows that the flows Art and X2 are both doubly tangent to D o at the 8 points 
covering X = b,  and X = bl respectively. 

Corollary. The Abelian surfaces A of  polarization (2, 4) are completely defined by the 
intersection o f  the 6 quadrics in IP 7 
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or equivalently by the following 6 quadrics, the summation running from 1 to 3: 

Qi = Z (Y, + Yl + 3) z 

Q'2 = E (Y, - Yl +3) z 

0.~ ' = Y~ (biy~ + b7 1 Yi+ 3) 2 

b 2 - b? Yv2 

YiYi+3 YTY8 

2 
Yi+3 

= E t~:-b4 y2, b4=b,  b2b,, 

where ba, b2, b a e ~ *  form a set of  moduli for .4. Moreover 

Jac {y2 = x(x  - bx) (x - b2) (x - ba) (x - b4)} 

is a double unramified cover of A. 

Proof In the proof  of Theorem 7, it was observed that L (ZS) = {z o = 1, zl . . . . .  z6, 
z 7 = bz~ z 4 - az 2 z 5 } smoothly embeds A into IP 7, and it is easy to check (as first 
observed by Haine [10]) that this smooth embedding is given by augmenting the 
relations of  the embedding in IP 6 (5.16) by the definition of  zT, to wit ~95 = 0, and 
one relation involving ZZT, namely ~)6 = 0; this leads to the first basis. Moreover, the 
locus of  rank 4 quadrics in the span X(~I + . . .  + WQ6 is given by the intersection of  
the four quadratic cones 

Ki={P}a,a~+a - %,+3z =0},  K4={Plaoa7-a2o,7 = 0}, i =  1,2, 3, 

having the explicit form: 

K I = { 4 ( Z -  y - c 2 c l W ) X - ( ~ U - b V - a c 4 W ) 2 = O }  

K2 = 4 ( X _ Z _ c 2 c 2 W )  y _  b U + a V - b c 4  = 0  

K3 = 4 ( Y _ X _ c 2 c 3 W ) Z _  c U+cc4 

K,, = {4(cI X + c 2 Y+  caZ + U ) W -  V z =O}. 

By inspection (using a 2 n t- b 2 + c 2 = 0) we have K 1 + K 2 + K 3 -t- 17 2 g 4 ~--- 0 ,  and 
4. 

therefore K = 0 Ks defines a surface. The hyperplane section with K 
1 

Kt3 {22 (c 1 X +  c 2 Y+ c a Z +  U) - x 2 W} 

= K  i n K  2 ~ { c  1 X + c  2 Y + c  a Z + U = x  2, V = 2 x 2 ,  W = 2 2  } 
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is seen, after eliminating first U, V, W and then Z, to be an elliptic curve; the latter 
can be viewed as a curve of  rank 3 quadrics in the affine linear span 

Q1 - cl Q4, Q2 - c2 Q4, Q3 - c3Q4, Q = r2 Q4 + 2~:2Q5 +/~2 Q6. 

According to Theorem 6, the above basis may be replaced, after a block preserving 
change of  variables, by a basis of the form: 

Q1, Q2, +' ' ' " ' Q3 , Q K L = L 2 Q ~ . + 2 K L b 4 Q s + L 2 Q 6 ,  

for an appropriate choice of  K and L. To show that the linear spans of the two sets 
of 6 affine quadrics given in the corollary match, we observe that the quadrics Q~, 
Q~, Q~" are in the span of  Q1 - cl Q4, Q2 - c2 Q4, Qa - c3 Q4, and the rest of the 
argument proceeds by picking three distinct values of  K/L. Thus the bases 
Q1, . .- ,  Q6 and Q ] , . . . ,  Q~ have the same span, and we conclude by the preceding 
arguments that the basis Q1 . . . .  , Q6 can be replaced, after a block preserving 
change of  coordinates, by the basis Q~, Q~, Q~, Q~ - q4 (zo, zT), Q~ - q5 (zo, zT), 
Q~ - q6 (2:0, Z7), where qi (Zo, zT) =- ai z 2 + blzZ7 + 2cizo zT. It was shown in Theo- 
rem 7 that the divisor (Q~) has the structure (Q~)= 2 D o -  2D, from which it 
follows that q6 (Zo, 27) is a perfect square (ez o + f z  7)2 = y2, and by symmetry, so is 
q4(Zo, z7 ) =y2 .  Since the span XQ~ + . . .  + W(~ must support a surface of  rank 4 
quadrics defined by 4 linearly dependent quadratic cones, we immediately find that 
q5 (Zo, ZT)= + Yv Ys/b4, concluding the proof of the corollary. 

Remark: Since the four quadrics Q~, Q~, O~,  ~)~- satisfy Q~ - Q~ = ~)~- - Q~, we 
may take any pair of  them to be the first two quadrics, and the other pair to be the 
latter two quadrics. Recomputing the new basis of  6 quadrics, involves a linear 

change of coordinates and a fractional linear change of the 1/~'s. There are clearly 
3 essential choices of  such bases, resulting all together in 6 sections corresponding to 
Y7 ---- 0 or Y8 = 0; they define 8-1 unramified covers of 6 hyperelliptic genus 2 curves, 
coming in 3 distinct pairs. All the above is computable in a linear fashion. This has 
been observed by L. Haine. 

7. The Degenerate Curve of Rank 4 Quadrics and K3 Surfaces 

In this section, we deal with the possibility excluded earlier, where the curve of 
rank 4 quadrics ~ c V___ IP a contains a degenerate component. 

Theorem 8. The situation where ~ c V contains a degenerate component, which & not 
a line, breaks up generically into two cases for which we provide a canonical basis in 
some appropriate coordinates; namely ff has a basis containing, besides a generic 
quadric Q4 of  the usual block form, the following three quadrics: 

case(A): Q.1 x~ 2 2 - 2 2 2 = + x 2 + x 3 , Q 2 = x 4 + x s + x 6  and Q a = x l x 4 + x z x s + x a x 6 - x ~  

case(S): 0.1 = and  0 3  = 

where Q-1 and Q2 do not contain any x~ term. 
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Then in case (A) (case (B) being analogous), the affine intersection I of  the 
quadrics can be completed into a K3 surface A by adjoining to I a divisor D, which is an 
8-fold cover of  Cg in two different ways, as indicated in Fig. 6. An appropriate rescaling 
leads to 

2 2 2 2 C4 X 2 ~)4 = ( x2 + x2 + 2~25X2Xs) + (0C3 X3 -Jl- 0~6X 6 "~ 20~36X3X6) -- 

and in this basis ~ is a rational curve: 
3 

cg: Z 2 Q1 + Q-.2 - 2ZQ3 = Y. ( Z x , -  x,+3) 2 - 2 Z x  2 . 
1 

The surface i experiences a 2-fold normal crossing along 8'  (= r with eight pinch 
points occuring at Z = 0 or oo ; moreover 8 can be given by 

with 

= ~: W = Z  ] 
x 2 _ x 2 _ x~ 

[ P t ( Z )  P2(Z) P3(Z) 

P1 =-- - P 2  - P3,  P 2 ( Z )  2 2 2 ~o~3q--o~6Z -1-20~36Z , P 3 ( Z ) = - ~ - l - Z 2 - 2 0 ~ 2 5  Z .  

Upon normalizing ialong ~, the curve r turns into the curveD = {8, U 2 = Z} of genus 
9 (see Fig. 6). 

A~/~={~f ,  U 2 = Z } ,  g ( / ~ ) = 9  

ramifed at 8 points 
given by Z = 0 and ~ / /  2 -  1 

g(~)= 3 

ramified at 12 p o i n t 4  - 1 
given by Pk(Z)k = 1,2, 3 =  0, 

4 -  l ~ r a m i f i e d  

D = { v  2 = z }  

2 - - 1 / / / / /  ramified at the 2 points 
given by Z = 0 and 

~={w=z} 

Fig. 6 

Proof. According to the Lemma in Appendix 1, V contains the announced 
canonical basis Qz, Q2, Q3 and one other (generic) quadric ~)4; after appropriately 
subtracting a linear combination of QI, Q2, and Q3 and after rescaling x4, xs, and 
x6 simultaneously, Q, can be taken to have the form given above. 

One then computes 8 '  by applying Theorem 1, with Q# replaced by Q2 and one 
checks by direct calculation that 8 ' =  8. The statements concerning the normal 
crossing, pinch points and the formula for /5 follows from Theorem 1, with 
c(p) = 2Z. All this taken together and the Riemann-Hurwitz formula yield Fig. 6. 
It is interesting to point out that the roots of Pk(Z)=  0, k =  I, 2, 3, discussed in 
Fig. 6, coincide with the points where K~ c~ Kj intersect cg. 
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K 2 

e 

Fig. 7 

It will now be shown that  the smoo th  surface A = I o b t a i n e d  by separating the 
two sheets o f i a t  ~ is  a K3 surface. Le t  ~ = / ~  be the curve on Tobtained by blowing 
up 8. F r o m  the Enriques classification o f  surfaces it suffices to prove that:  (i) the  
canonical  divisor is trivial and  (ii) there are no  ho lomorph ic  1-forms. Let zr: I ~  I 
be the natural  projection. Then  the canonical  divisor 

K r =  n* (Kt) - 

= re* ((deg Q 1 + deg Q2 + deg Q3 + deg Q4) " H + Kn,6 ) ]i - g 

= re* ( g H -  7 H )  - (Tr~ {x o = 0}) 

= 0 ,  

i.e., the canonical  divisor is trivial. Sta tement  (ii) amoun t s  to 

dim H ~ (f2~) = dim H~ '1 ( 0  + dim H ~ (0z) = 0, 

or what  is the same 

Z(OT) = d i m H  ~ (Or) - d i m H  1 (Or) + d i m H  2 ((-Or) = 1 - 0 + 1 = 2.  

In view of  the exact sequences 

0 -~ Or~ Ir, Or~ lr,Or/Ox--* O, 

0 --* O t ~  x ,  O i - *  x,O~/Or O, 
we have 

= x (6~,) + x ( ~ , o d ~ , . )  

= z(r + x ( ~ )  = z ( ~ , ) ,  

with Z (O s) = 1 - genus (g )  = 1 - 3 = - 2; also Z (d~) = - 8. By an a rgument  due 
to M u m f o r d  [19], Z (Ox) = 8, and so X (Or) = 8 - 8 - ( - 2 )  = 2, proving  (ii) and  thus 
the theorem. 

Remark. It is reasonable to conjecture that  the K3 surfaces obta ined  here are 
Kummer surfaces. 
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8. A Curve of  Rank 4 Quartics and Abelian Surfaces of  Polarization (1, 6) 

In Theorem 7, it was pointed out that the abstract curve ~ ~ IP 3 can be represented 
as a family of rank 4 quadrics in Vby substituting ~)i for c i into c (Z ,  W); see Fig. 3. 
This procedure can now be generalized to a situation of  quartics, where much of the 
geometry carries over. In the classification of  the left-invariant metrics on SO (4) for 
which geodesic flow 

OH a H  
~ ' = x '  ^ - -  s  - -  

c3x' ' Ox" 

is algebraically completely integrable, we found a one-parameter family of  metrics 
(see Adler and van Moerbeke [2-4]) given by 

H = x ~ + a 2 x 2 4 + ( 1 - a ) ( l + 3 a )  (1 + a ) ( 1 -  3a) 
2 x~ x 4 - 2 xz  Xs 

(1 +a) (1  - 3a) 3 (1 + a)3 (1 - 3a) (1 - a2)(1 - 9 a  2) 
- 16a x~ - 16a xZ - 8a x3x6 

with a ~ ~ ,  a 4: _+ 1, _+ 1/3, 0. The associated flow has besides the orbit invariants 
TI= Ilx'll 2, / ' 2=  IIx"ll z and the energy H above, a quartic invariant Q4 to be 
exhibited below. To this end, perform a linear change of  coordinates x r-,, y, given in 
Appendix 3; there also we define the quadratic expressions G a , . . . , G  s in y; 
expressed in terms of  the Gi, the system admits the following invariants: 

1 - a  
Q.t = aG2 + ~ G7 - cl  Yo 

l + a  _ 
Q2 = - a G a  + ~ (is - c2y~ 

2G6 G1 Gz 
C93= ( 1 - 3 a ) ( l + 3 a )  l + 3 a "  1 - 3 a  c3y~ (1) 

8 
1 

Q4- (3a - 1) (3a + 1) ((1 - a) (1 - 3a) (G~ + G ]) + (1 + a) (1 + 3a) (G~ + G]) 

+ 3 (1 - a z) (2G t G z - G23) + 4 (1 + a) G2 (G6 + Ga) + 4(1 - a) G~ (G6 + G 7 ) -  c4y~. 

4 

It is shown in [3, 5] that the affine intersection I = ~ {~)i = 0, Yo = 1 } completes into 
1 

an abelian surface A with polarization (2, 1 2). Associated with this polarization, 
there is a very ample divisor D on A of geometric genus 25, with 8 normal crossings; 
thus the smooth version D o f /~  has genus 17. The space of  sections L(/~) is 24- 
dimensional and contains 10 odd and 14 even sections, showing the period matrix 
must have the form 

(20 0a c) (a 
12 c b ' Im b > 0 .  

This curve D can be viewed as a 16-fold cover of  a rational curve ~f in two 
different ways as illustrated in Fig. 8. On the one hand, D is a 4 - 1 ramified cover o f  
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the componen t  dr' ~_ [c~ {Yo = 0} c ]1:)6, which is " reached"  by the trajectories o f  the 
flow. The curve g '  is rat ional  and  along there /exper iences  a 4-fold normal  crossing 
with various pinchings. In turn, 8 '  is a 4 - 1 ramified cover o f  a rat ional  curve ~,  
which will play the same role as the curve o f  rank  4 quadrics for  the polarizat ions 
(1, 1) and (1,2). 

On the other hand, in order  to identify ff as a curve o f  rank  4 quartics, it is useful 
to consider D as a cover o f  (g in a different way. Namely  D is a 4 - 1 unramified 
cover o f  a genus 5 curve Do, i tselfa 4 - 1 ramified cover o f  Cg, an intermediate curve 
being the hyperelliptic curve 

~ :  W E (~Z +/3) 2 - 2 WP s (Z) + P4 (Z) = O, 

where 

P4 (Z) = (c o (1 - Z) Z + c 1 Z +  c 2 (1 - Z))  z - Z(1 - Z)  ((yZ + 6) c4 + 4el e2 - 68c~) 

P3 (Z) = (~Z + fl) e 2 (Z) - 2Z(1 - z )  T1 (2) 

with 
Pz(Z) = -Co(1 - Z ) Z +  c x Z +  c2(1 - Z )  

c o=c3(3a z + l ) - c  1 - c  2 

T 1 = Ilx'[] 2 = tic 1 + fie 2 - e 3 ( a  2 - 1)63 

c~= 16a 3 f l = ( a - 1 ) a ( 3 a + l )  y = 4 a  6 = ( a - 1 ) ( 3 a + l ) ;  

in the formulas  a b o v e -  denotes  the involut ion a c~ - a .  
To  summarize,  D is a 1 - 4 unramified cover o f  the curve Do o f  genus 5, while 

D O is a double cover o f  the hyperelliptic curve g ,  ramified at 4 points,  where 
P4(Z) = 0. We are now in a posi t ion to make  the following statement:  

Prym (Do/ag') ~A =/~(g= 25) q 

[ y 2 = I - Z  

D(g=17) 

4 ~ a m i f i e d  

DO={w=u2(~I_Z)Z} (g=5) 
/ 

2 -  1 / ramified at 4 points 
where P4(Z) = 0 

= { W z (otZ+ fl)2 _ 2 WP3 (Z) + P,,(Z) = 0} 
1 /  (g = 2) 

2 -  ramified at oo and the 5 roots of 
p2(Z)_(o~Z+fl)2p,,(Z)=Z(I_ZIR3(Z) 

~={w=z} 
Fig. $ 



Intersection of Four Quadrics in IP 6, Abelian Surfaces and their Moduli 71 

Theorem 9. Given the divisor D and the space o f  quartics 

V =  V(QIQ ~ - ciqy4o, 1 < i < j <  3, Q.4), 

the curve cg can be realized as a curve o f  " quartics o f  r a n k 4 "  

3 

cg: ~ ( ~ i ( Z ) y i + ~ i + a ( Z ) Y i + 3 ) 2 F i ( y ) _ c ( Z ) y ~ ,  F i quadrics (3) 
1 

in V, by substituting Q~ for  c i (given by (1)) in P4(Z) .  Conversely, given this 
curve ~ o f  " quartics o f  rank 4",  there is a 1 - 4  map f r o m  cg to a component 8 '  o f  

{C)i = 0, Yo = 0}, along which the surface i c IP 6 has a four- fold normal crossing 
with a number o f  pinch points. Blowing up [ along 8 '  turns 8 '  into the curve D 
deft'ned by 

(U2(1 - Z ) Z ) 2 ( o ~ Z + f l )  2 - 2U2(1 - Z ) Z P a ( Z ) + P a ( Z ) = O ,  (4) 

X z = Z,  y z  = 1 - Z 

where P3 (Z) and P4 (Z)  are the polynomials  defined in (2). 

Proof. Substituting C)i for ci in/ '4  (Z) realizes ~g as a curve of rank 4 quartics in V 

2 2 cr Qz  = zZFl + zzF2 + z3F3 _ e , , ( Z ) z ~ ,  (5) 

where the z~ denote the linear expressions ofy  appearing in (3) and the F i quadrics of 
the usual block form; it is convenient to express the quadrics F~ in terms of the z i (as 
done in Appendix 3), although they must be thought of as functions of Yi. The 
Z-dependent linear map y c--. z and the quadrics F~ are given in Appendix 3. 

In analogy with Theorem I and based on the form (5) of ~)z ~ oK, we define a 
natural map from ~f to 8 '  = c~ {C)~ = 0, z o = 0}. The intersection 

{C z = 0, Zo = 0}  = 0 ,  Zo = 0}  

contains the plane 6 Zo = z~ = z z = zs = 0. Thus the intersection of the plane with 
two generic quadrics Q'  and Q" in the span V(Q~, Q2, Q 3 )  will consist of four 
points dependent on Z. This procedure can easily be carried out by choosing for Q' 
"and Q" the following two quadrics 

Gz = P 3  ( Z )  l c, = Q . . . .  = Q .... = Q~ with G--z = Gz - P3 (Z) Z 2 

H z  = x42 ..~ x52 + x~ = (6y 1 + ~y4) 2 --1- (3y z + r 2 - (6y 3 + r 2 , 

by performing the change of variables y ~ z and by observing that 

/ 2a ( a -_ l )  z24+ 2 a ( a +  i) z~+ a = - I  z~) Z ( Z -  1) 
Gzl z '= '~=~ '=~  3 a + l  3 a - 1  2 (-9-a~-Z 1) 

hrz l , ,  =~, =z, = o  = 4~ 262 ( z -  1) z] + 4 y2 6 z Zz~ - 6 2 a2 z~ . 

~' Moving with Z 
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One then verifies that 

(~'= {G Z = O} ~ {H Z = 0 }  ~ { z  0 = z I = z 2 ~ -  z 3 = 0 }  

2 2 = {(z0, zl ,  . . . ,  z~) = (0, 0, 0, 0, - 32, 5 2, 472)} 

= ( y o , y ~ , . . . , y 6 ) =  O, Z ' I - Z '  Z '  ]/I_--Z-Z' ] / ~ '  1 Z " (6) 

This is a 4 - 1 cover ofr~ (Z plane), ramified at Z = 0 and 1. In exactly the same way 
as in Theorem 1 one shows that i is singular along g'.  

In order to establish the converse, we first notice the following relation between 
the quadrics F / and  G z 

3 

f i '~  fliGz(O' O' O'z4'z5'z6)  + Z zjff ij(zj, zj+ 3) (7) 
j = l  

with/A depending on Z and the ~o linear functions of  z; this shows in particular that 
F~ = 0 along g' .  It is convenient to replace the quartic ~)z by a new quartic Qz, which 
vanishes as well on [ and which is defined by 

= 0 z -  (Y u, 

= ~ ' z  2 z j m o ( z  ) + U~z P 3 ( Z ) z 2 - P 4 ( Z ) z 4 o ,  using(7) 
1 

with linear functions m o (z). 
Consider now the chart on i around most of  g ' ,  which is defined by the non- 

homogeneous equation Y3Y6 +Y3 +Y6 = 0; this is legitimate since that relation 
vanishes automatically along g ' ,  as seen from (6). As was done in the second half of 
Theorem 1, we must extend the variable Z to a neighborhood of g '  in L by 
introducing a relation between Z and y, which is satisfied on g'.  In view of(6), this is 
achieved by setting 

1 1 
Z . . . .  l + - -  

Y3 Y6 
in the chart Y3Y6 q" Y3 Jr Y6 = O. 

In this chart, z 3 = 0, z6 = 2~ and hence zaz6 = 0; we now perform a first change 
of  coordinates 

(Yo,YI . . . . .  Y6) ~ (Yo, Z, u l , . . . ,  us) 
defined by 

1 1 
zizi+ 3 = Uiyo( i= 1,2), z~ + S 2 = u4yo, z 2 - 6 2 = usyo ,  Z . . . .  1 + - - .  

Y3 Y6 

Here, the z~ must be viewed as functions of  Yi and Z. Using this change of 
coordinates in the quadric ~z  = 0, adequately prepared [see (1) in Appendix 3], 
leads to 

((u I - u2) 2 + O ( y o ) ) y  a = O. 

Upon dividing by y3 and upon taking the limit Yo = O, we find (ul - u2)lyo =0 = O. 
This conclusion suggests, in a second step, an amended change of coordinates 

(Yo, Yl . . . .  , Y6) r-~ (Yo, Z, ul ,  u 2, u4, us) 
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defined in the same affine chart by 

zlz4 = u ly  ~ z 2 + ~2 _ cuiYo = u4Y 2 

z 2  z 5  - z ,  z +  = u2y o - - y o  = u 5  ( 8 )  

1 1 
Z . . . .  1 + - - .  

Y3 Y6 

Expressing the quadrics Qi [see (1)] in terms of  the z i and noticing that ~)i vanishes 
along 8' ,  we have that 

Qi = Qi - Q~ 1(4 ...... 62)=(0 ..... 0,-~2,~2.4~b 

= ~i (Zi --  ~2)  .~_ fli ( Z2 - -  6 2) .~_ ~)i ( Z2 --  4Y 2) "+- 61Zi Z4 

+ linear function ( z 2 z s - z i z 4 ,  z3z6, z ~ , z ~ , z ~ ) - q y 2 = O .  (9) 

with ~ ,  ill, and V~ rational in Z. Performing the change of  coordinates (8), the 
second line in (9) is divisible by yZo, whereas the first line is divisible by Yo; however 
by choosing e appropriately in (8), the first line has order y2 as well. Dividing by y~, 
one easily finds 

M ( Z ,  ua) (u2, u4, Us) r = f ( u l ,  Z)  + Yo g (u, Z, Yo), (10) 

where the 3 by 3 matrix M ( Z ,  ui) has determinant u31h(Z); so M is invertible for 
most values of  u~ and Z. Finally, we use the coordinate transformation (8) in Qz 

~zl~=0,zo=2~ = Rz + Sz  

= ( (~Z+ fl)2 fi~ _ 2 p a ( z ) a l  + p4 (Z ) ) y  ~ +p(u ,  Z, yo)y  ~ , (11) 

where R z and Sz lead to terms of  order yo 4 and y~ respectively and where 

= (  Ul ~ 2 ( I _ Z ) Z ( a 2  1)" 
 pc,, Vz+6] 

Dividing (11) by yo 4 and letting Y4 ~ 0 in (10) and (11) lead to 

(aZ+f l )2~ z - 2P3 (Z)fi 1 + P4(Z) = 0 and M ( Z ,  ui)(u2,u4, u s ) r = f ( u i , Z ) ,  

showing that u~, u2, u4, and u 5 are all rational functions on the curve announced in 
(4). At a few places along 8' ,  like Z = 0 and Z = 1, the coordinate change breaks 
down and hence a separate argument must be made, ending the proof  of 
Theorem 9. 

Remark. The divisor/~ on the abelian surface is the same as the curve D, but with 8 
normal crossings. The latter cover the point Z = - 6/7, which is also the locus where 
the quartic ~)z, Zo = 0 is a product of  two quadrics; the two quadrics happen to be 
the orbit invariants Ta and T2 introduced in the beginning of  this section. 

Appendix 1 

Lemma. (i) The curve of  rank 3 quadrics c~ ~ V ~- IP a contains a line component ~r if 
and only if, in appropriate coordinates, V contains the following two quadrics 

Q1 x2 q- X22, Q 2  2 2 ~ X 2 "~ X 3 �9 
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Then, with regard to Qi and Q2, 

cg' = {Ql + tQ2 = x2 + (l + t)x~ + tx2, t e ~} .  

(ii) cg contains a degenerate component ~' ,  which is not a line, i f  and only if in 
appropriate coordinates, V contains the following three quadrics 

either case (A): 

= xZl + x 2 + x a ,  Q 2 = x 2 + x g + x  2 and Q a = x l x , + x z X s + X 3 X 6  

or case (B): 

Q1 = 2 + x 2 + x 3 ,  Qz=x +x +x  and Q3=x x4+x xs+a x . 

Then, with regard to Qt,  Qz, Q3 

cg,= t2Ql +Q2 + 2 t Q 3 = ~ ( t x i +  xi+3)2, t e l r  cc~ in caseA 
1 

= t 2 Q l + Q 2 + 2 t Q 3 = ~ ( t x i + x i + 3 ) 2 + ( t 2 + a 3 t + l ) x ~ , t e l F ,  c ~ in case B. 
1 

Proof. (i) Let ~ '  be a line component of  ~. Since V satisfies condition C2, 
any point of  ~ '  has the form x t2 + x  22 + 7 3 x  322 (with Y3 possibly 0), maybe after 
a linear change of  coordinates. Any other point on ~ '  must have the form 
3 

Z( iXi+ i+3Xi+3)2; SO 
1 

3 

~ ' =  {s(x~ + x~ + ~,~ x~) + 2 (~ x~ + ~, +3 x~ +3)5 = sum of  3 squares, for all s e �9 }. 

For  this quadric to be a sum of  3 squares, ei + 3 = 0 (i = 1, 2, 3) must hold. Then, 
using condition C2 once more, one checks, upon some rescaling, that 

~" = linear span of  the quadrics 2 2 x l + x 2  and x~+x~ ,  

concluding the proof  of  (i). 
(ii) Next consider the case of ~ containing a degenerate component ~ ' ,  being 

different from a line. So ~f' c two dimensional plane c V. All quadrics in ~ have 
rank 2 or 3, but never 1 by condition C2. This rank must be generically 3, for 
otherwise the curve ~ '  would reduce to the vertex of  one of  the cones K~, which is 
impossible, as ~ '  is a curve. Therefore we may pick one quadric 

= + + 

Besides, not all remaining quadrics [modulo permutations of (1,4), (2, 5), (3, 6)] 
on ~f' have the form 

2 2 2 2 .  (~1xl + ~4x4) 2 + ~2x2 + ~3x3, (1) 

indeed, if all quadrics in ~g' would have that form, then since ~g' lies in a plane and 
since ~g' is not a line, there would be three independent quadrics of  the form (1); 
therefore their linear span would contain a quadric 2 2 fix Xl + fl~ x2 + 2fll4xi X4, 
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violating condition C2. Therefore, the remaining quadrics in c~, must generically 
have the form 

either case A: Q2 = x z + x z + x z or case B: Q2 = x 4 + x s . k _ x  2 . 2  2 

Hence let us pick Q2 as in case A. Then the plane containing if '  must be spanned 
by the following three quadrics 

Q~ = x~ + x~ + x~ 
Q2 2 2 2 ~ X4-F" Xs  "q- X 6 

3 
"c~ / 2 X 2 - -  2 X 2 Qa = 2Xl X4 W L ~,0{i i "1-0~i+3 i+ 3 "~- 20{i,i+ 3 X i X i +  3) ,  
2 

and expressing that the linear span XQ1 + YQ2 + ZQ3 contains a curve of rank 3 
quadrics amounts to the relations 

X y =  Z 2 

(X+0{2Z)(Y+0{2+3Z)=0{2 Z 2 i = 2 , 3 ;  i , i+3  , 

fo r  t h i s  t o  d e f i n e  a c u r v e ,  y o u  m u s t  h a v e  0{2 = 0{3 = 0{ 5 = 0{ 6 = 0,  0{252 = 0{362 __ 1, a n d  

hence, perhaps after flipping some signs, Qa takes on the form announced in (ii). 
Finally, picking Q2 as in case B leads to the other normal form in (ii), thus ending 
the proof of the Lemma. 

The corollary below refers to the space Vofquadrics of the form Qi - Qi - ci x2. 

Corollary. Whenever cg contains a degenerate component cg, which is not a line, then 
for generic ci, V contains the following three quadrics 

case (A) 

O , = x g + x Z 2 + x ~ , O 2 = x 2 + x ~ + x 2  and ~__~3=XIX4"~X2X5"-[-X3X6--X 2 

case (B) 

O.l = x~ + x ~, + x~, 0.2 2 2 = X 4 " q - X s q - X  3 a n d  0 3 ~ - . X l X 4 - ~ - x 2 x 5 - - ~ a 3 x 2 - x  2 

where Qx and Q.2 do not contain any x 2 term. 

Proof As both cases are similar, we prove the theorem for case (A) only. From the 
Lemma above, 0, can be picked as 

01 = x~ + x~ + x~ - cl Xo ~, 

~72 = x~ + x~ + x~ - c2 Xo ~ 

a n d  C)3 ~-- Xl  X4- "~- X2 X5 "q- Xa X6 - -  C3 X20 �9 

Then the curve cr in the hyperplane V = V(Q1, Q2, Q3) - V has the form 

cg,= t2~.l +Q-2+2t~ .3=2( t x i+x ,+a)2_( tZc l  +2tca+c2)x2o, t ~  ; 
1 

for generic e~, the coefficient ofx~ vanishes for distinct t~. Picking the corresponding 
points in cg, leads to Q~ and ~)2 as promised and then repeating the argument in the 
above lemma and rescaling Xo leads to C)3 as announced in the corollary. 
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Appendix 2 

Normal Forms for a Basis V 

The purpose of this section is to prove Lemma 1 of Sect. 3. We now list the nine 
normal forms, which are classified according to the position in IP 3 of  the vertices 

- - f l i+aai ,  i+ 3, - -  fli, i+ 3, 0~i,i+ 3) of the cones K i. 
The proof of  Lemma 1 depends crucially on the following: 

Lemma. Let the linear span V with basis Qi, i = 1, . . . ,  4 of Sect. 1 have the property 
that every pair of columns in the matrix 

is independent. Then and only then after a linear change of the basis, V has a basis of 
�9 the form NF1. 

Proof of Lemma. By condition C 1 of Sect. 1, we may, after a linear change of  basis, 
assume oq4, fl~4, ~t2s, and fl25 # 0. Then in order to find Q3 and Q4 of NF 1, we find 
(X, Y, Z, U) and (X', Y', Z', U') e K t c~ K 2 with Z ~e 0 and U' :# 0 and in addition 
satisfying 

(a) (X+ct2 Z + [32U)(Y + ct]Z + [3]U)=(Z~,  + U[3~,02=O 

with X + ~ Z + fl~ U = 0, (2) 

( x  + z + u) ( r  + z + c)  = + ufl25) , o ,  (b) 

and 

(a) 

(b) 

( y ,  ji_o~2 Z t 2 , t 2 t 2 t JV f l  l U ) ( Y -~- o~ 4 Z -~ f14 U ) = ( Z t o~14 -~ U t f114 ) 2 :~ O , 

( Y ' - ~  2 t 2 t t 2 , ~2Z + 3 2 U ) ( Y  +~sZ +32U')=(Z'a25+U'f2s)2=O (3) 

with X' 2 t 2 t +~tEZ +flEU = 0 .  

Indeed, system (2) has a solution with Z:~0:  at first solve (a) for U and X 
in terms of  Z and then (b) is solvable in Y by the independence of the first and 
last columns in (1). Similarly solve (3) by using the independence of the last 
two columns. The independence of  the first two columns of (1) assures the 
inequality in (2) and (3). Then the new quadrics XQ1 + Y Q 2  Jv ZQ3 + UQ4 and 
X'Qt + Y'Q2 + Z'Q3 + U'Q4 have respectively the form 

2 2 a4 x4 + (a2 x2 + a5 xs)2 + term containing x3, x6, a2, as :~ 0, 

2 2 (b 1 x 1 + b4x4) 2 + b s x s + term containing x3, x 6, bl,  b 4:4= 0. 

These quadrics, together with Q1 and Q2 span V. The proof of the Lemma is 
finished by noticing that if Vadmits the basis NF  1, then any other basis with Q1 and 
Q2 as before satisfies the condition placed on matrix (1). 



Intersection of Four Quadrics in ]p6, Abelian Surfaces and their Moduli 77 

p,l 

> 

a) ~ "  
1 2 . /  

~  

0 

n O 

0 0 0 

N 

x 

O 

O 

u 

t~ II C ~  

(~1 ~ ,,-4 ~ ~ " 0  0 

o o 

§ 

�9 § 

~ Z  

ii 

c ~  

X 

§ 

x 

X ~ X 

C~I ~. 4- X 4- 

+ 

§ § 4- 7" 
§ ~ ~ 

§ t'M ~,') f~l  CN,~"  ~%1 , ~  c',l 
• 

Z + x ~ ~ 

+ § Nc~)~'l 

N ~ X X 

iI n II 14 

o o + o J 

0o 

E ~ 
u _  

Z Z 

[.%1XL~-% (%1 x 

4- § § 

f , J  

r"4 

# n 



78 M. Adler and P. van Moerbeke 

O O O O 

x x 
x 

x 

•0(lu• c~  (D  0 C~ 

0 " l k  (~1 t o  -,m. 
0 0 

(= ~ L,  k 'q ~o  

O 4a . ~  4-J 4-J ~ 
O') N N . ~  O 

~O X X 

x 0 x O 

§ 0 
X + (N CO 
~'3 ~ tr) X 

X ('3 X CO ~'-'u"l i'~l X § (~ 
~ X O f~l r CNO'I I M ~  (.O p,I Le~ 

O (~ d~ ~ X X X 03 X 
(xJ ~ (XICO (xJ(~  (xJtO O (xJ U'I 

§ § 

N t ~  
X X X I~l ('xl U~ ~ x l ~  ('~I~ r ) t ~ C ~  

(',& (~') ~c',~ NLK'; X x X x X 

§ § § * ~ 4, 
~n 

x x x 

o .  .o .o ~ 



Intersection of Four Quadrics in IP 6, Abelian Surfaces and their Moduli 79 

~ O 

~ r-4 ~ u 

Lo, ~ o, 

x x 

0 0 0 
0 

ii ~ ii 

C'4 

o ~ 

x 

• 
N c , ~  • ~ ~ P,I xo'] N x ~  I'N c,4 

4- § § § § 

X X X X 

X ~ X X 

x 

x 

II H I I  f t  

o, 

r 
x 

t t l  
r 

§ 

fxl tt~ 

c~t 



80 M .  A d l e r  a n d  P. v a n  M o e r b e k e  

Proof of Lemma 1. I f  the condition o f  the Lemma or some permutation thereof is 
satisfied, then V admits a basis NF1 permuted accordingly. Therefore an 
obstruction will occur whenever every one of  the six matrices (1 < i < j  < 3) 

\fli, i+3 flj,j+3 f12 f12/' mlj'~-kfli, i+3 f l / , j+3  f12+3-f12+3/ 

admits a pair of  dependent columns. All the different cases of  this fact will now be 
investigated, leading to the exceptional forms N F 2 , . . . ,  NF9. 

Case 1. Assume the first two columns are dependent in at least three of  the six 
matrices; then simple inspection shows (,-,means proportional) 

(0~14' 0~25' 0~36) ~ (fl14- '  f l 2 5 '  f l 3 6 ) '  

in which case every matrix M~ has already two proportional columns. The 
proportionality relation shows that Q3 can be replaced by an appropriate linear 
combination of  Q3 and Q4 with no cross-terms, while x 2 and x 2 can be removed by 
subtracting an appropriate linear combination of  Q1 and Q2, leading to the quadric 
Q3 appearing in NF2. 

This case breaks up further into three cases. 

(a) O~ 2 2 2 2 2 2 2 2 = (XlX 1 "4- (~4X4 "31" 0~2X 2 "4- 0~5X 5 with all ~i * O, ~ # ~,  

~#0,~2.~  2, 
(b) Q3 2 2 2 2 2 2 with all ----- ~ l X t  + O~4X, , + ~ 2 X 2  

(c) Q3 2 2 2 2 = ~1 xl + ~2x 2 with all 

and Q4 as before. Indeed in (c), not satisfying the inequalities would violate 
condition C2; in (b), 0c 2 = 0 would violate C2 and ~4 = 0 would imply (c); 0q 4= 0 can 
always be made to hold, because if cq = 0, Q3 - c~2 Q2 would have the coeffi- 
cient of  x 2 non-zero, which could be renamed into x 2 via the relabeling 
(1,4, 2, 5, 3, 6) ~ (6, 3, 4, 1, 5, 2) which puts us back into case (b); and a2 = ~22 leads 
back to the case ~1 = 0, just considered, by relabeling. Finally, violating any of  the 
inequalities (a) leads back to (b) or (c). Moreover, in Q4 the terms x~ and x~ can be 
removed by forming Q4 - fl~ Q1 - fl~ Q2. The three cases above can be summarized 
by the conditions going with NF2. 

Case 2. The first columns are dependent in precisely two of  the six matrices, 
while in the other four, the dependence involves the last column. The only 
case to be considered is the one where M 0 and M~ both have proportional first 
columns, for some choice of  i, j, since any other case would imply (Case 1) 
(0~14, 0~25,~36)"~ (f114.,f125,f136)" In view of the relabelings it can be assumed 
without loss of  generality that (0~25,~36) is proportional to (f125,f136) in the 
matrices M23 and M)3. Then in each of  the remaining four matrices, the last 
column is a multiple of  the column (0q4,fl~,) r o r  (0~25,f125)T; in short, the four 

2 2 2 2 2 2 - -  0c 2) are proportional columns whose lead entries are (a2 - ~ ,  ~3 - ~1, c~s - a4, ~2 
to columns with lead entries ~14 or ~2 s; we list all alternatives for the lead entries of 
the columns (up to relabeling): 

(~ . , ~ . , ~1 . , ~* ) ,  ( ~ . , ~1 . , ~ , * ,~ ) ,  ( ~ 1 , , ~ , ~ , ~ 5 ) ,  
(~ , ,~ ,~ , , c~z~) ,  ( ~ , ~ , ~ , , q # ) ,  ( ~ , ~ , ~ , ~ , ) .  
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To get the above list, rule out the case  (525 , 525 , 525 , 525 ) by condition C2 and keep 
in mind (525,536) "~ (//25,//36)- After taking appropriate linear combinations of the 
basis of V, the following choices for the pair Q3 and Q 4  remain, corresponding to 
the above ordering: 

(ii) {Q3Q4 = 

(iii) {03Q, = 

(iv) ~ Q3 = 
Q4 

(V) {0304 = 

(vi) ~ Q3 = 
04 

with all 5ii and//it nonzero by condition C 1. We indicate the argument in the first 
case only, where (k = 514///14 ) 

((X2 -- 5 2 , 5 2  --  5 2 , 5 2  --  52 ,  52 - -  52 ,  524)  . . . .  k ( / / 2  /~1 ,/- '3R2 R2 - -  k ' l ,  F ' 5 R 2  R2 / / 2  //2 //4,2//14-)2 

and 
(525 , 536 ) = k '  ( / / 2 5 , / / 3 6 )  , 

with k, k '4:  O, and k 4: k', to insure independence of  Q3 and Q4. Then by 
subtracting appropriate combinations of  Q1 and Q2 from Q3 and Q4, we may 
assume 51, 54,//1 and//4 = O; then replace 

Q3 c-.. Q3 - kQ4 = 2(52s - -  k//25)x2x 5 + 2 ( 5 3 6  - k//36)x3x6, 

Q4c-~Q 3 k, Q4=2(514_k,f l14)XlX4+(52 , 2 2 2 t 2 2 - - k / / 2 ) x 2  -[- (5 5 - -  k/ /s)x5 

+(5~ k ' / / ~ ) x ~ + ( ~  ' : - -  - -  k / / 6 ) x 6 ,  

and relabel. Since k 4: k', these Qa and Q4 along with Q~ and Q2 form a basis of  V 
and by C1, the new % and//0 do not vanish; this is case (i) with//24://2 or//24://2,  
for otherwise Q4 - / / 2  Q1 - / / 2  Q2 would violate condition C2. This is precisely form 
NF 3. Similar arguments lead to (ii), (iii), (iv), (v) and (vi). 

Case (ii) can be renamed into N F 4  with 534: 0, otherwise it reduces to a special 
case of N F  3. Case (iii) can be renamed into NF  6 with 524: 0, otherwise it reduces to 
a special case of  NF4;  also, if 53 = 0 would hold, the permutation 2 ~--~3, 5 ,--~6 
would turn it into a special case of  NF4.  Case (iv) is precisely NF7,  where 534: 0, for 
otherwise the permutation 1 ~--~ 4, 2 .-*5, 3 *--~6 would turn it into NF4;  also 564:0 
so this is not a special case of NF4.  Case (v) is precisely NF5,  where 554:0 since 
otherwise it is a special case of N F 4  and also 534: 0, for otherwise the permutation 
3 ~ 5 ,  2 ~ 6 ,  1 ~--~4 would turn it into NF4.  Finally, the permutation 5 ~--~ 6, 2 ~--,3 
turns (vi) into NF8,  with 524: 0, since otherwise it is a special case of  NF7;  also 

2 5 2 5 x 2 x  5 -1- 2 5 3 6 X 3 X  6 
2 2 2 2 2 2 

2fl14 Xl  X4 + f12 X2 .q- fl5X5 -1-//3X3 "31-//6X6, 

5 2 2 2~25x2x 5 + 2 36X3X6 -[- 56X6,  
2 2 2 2 2~4x~x4 + #~x~ + ~x~ +//~x3, 

2 2 2 2 
2 5 2 5 X 2 X  5 + 55X 5 --[- 2 5 3 6 X 3 X  6 --[- 56X6 ,  

2 2 
2 f l14X l  X 4 + f12X2 q- f13X3, 

2 2 2 2 
2 5 2 s X 2 X  s -[- 5 3 x  3 -~- 2 5 3 6 X a X  6 q- 5 6 x 6 ,  

2 2 2//14xx x4 +//2x 2 +//5 xs, 

2 5 2 5 X 2 X  5 + 52X5 + 52X3 + 2 5 3 6 X 3 X  6 

2 / / 1 4 X  1 x 4 + / / 2 X 2  2 -t- f12 x2  , 

2 2 2 2 2 2 
52X 2 + 55X 5 + 2 5 2 s X z X  5 --]-- -1- 5 3 X  3 2 5 3 6 X 3 X 6 ,  

2 2 
2 f l 14Xl  X4 q ' - / /6X6,  
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0c 6 ~l= 0 or else this is a special case of NF6  and finally ~a 4= 0 or otherwise this is a 
special case o f N F  5 under the 2 ~ 5, 3 ~ 6 permutation. The inequalities on the fl's 
in NF3 to NF8 are present to satisfy condition C2. 

Case 3. In each matrix Mij, the last column is proportional to one of  the remaining 
columns. Most of the cases violate condition C2 or the independence of the 
quadrics or they can be reduced to another one by renaming, so that only two cases 
remain, namely: 

(a) (cq4, c t 2 -  2 2 2 2 2 2 �9 1,  ~ - ~4.) ~ ( & 4 . ,  i 2  - & ,  i ~  - ~), 
(0~36,0~2 2 2 ~ 2 ~ ~ I ' R  R2 2 2 - -  0~1' 0~6 4-I k P ' 3 6 ' / ~ 3  - -  i l l '  f16 - -  f 12 ) ,  

- -  ~ 2 '  ~ 6  51 k / - ' 25 '  /-'3 - -  i 2 '  i 6  - -  # 2 ) ,  

or (b) (~14, ~2 _ ct2, ~2 _ ct2) ~ (ill,r, f12 _ f12, f12 _ f12), 

( ~ ,  ~3 ~ - ~, ~ - ~ )  ~ ( t ~ ,  l ~  - ~ ,  l ~  - ~,~), 
( ~ 6 ,  ~ - ~1 ~, ~ - ~ )  ~ ( 1 ~ 6 ,  l ~  - ~ ,  l ~  - t ~ ) .  

These cases amount to normal forms NF9, a) and b), concluding the proof of the 
Lemma. 

Appendix 3 

The linear change of coordinates x c-~ y, defined by 

. a - I  
(x14) = t ( 3 a +  1 

() xsX2 = - i  \ 3 a _  1 

,);,a ,,y, 
\ (3a  - 1) (a + 1)y4) 

-11) f ( a + l ) y 2  
\(3a + 1) (a - 1)ys)  

x 6 3a + 1 3 a -  1 (a + 1)y6,]' 

transforms the geodesic flow of  Sect 8 into a new system, whose constants of 
motion are given by (1); the quadratic expressions G1, . . . ,  G8 are given by 

Gt = Y ] - Y 2 Y 5  

G 2  ~-- y2 _ yl Y4 

2_~_ 
G T = y ~ - Y a  YlY4 

G8 = y~ _ y2 + Y2Ys . 

- 2  
G 4 -  1 - 3a (Y2Y3 - Y s Y 6 )  

Ga = Y l Y2 - -  Y4Y5 G 6  = Yl Y4 + Y2 Y5 - -  Y3 Y6 

--2 
G5 - 1 + 3a (YlY6 -Y4Y3) 
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Consider  now the l inear  funct ions  za . . . .  , z 6 o f  y~ . . . . .  Y6, dependent  on  the 
parameter  Z 

~ = Zy~ + ( Z -  1 ) y  4 "~4 = (a  - 1 ) ~  1 + ~Y4 

z 2 = ( Z - 1 ) y 2 + Z y 5  ~ 5 = ( a + l ) ~ 2 + 6 Y 5  

z3 = ZY3 + ( Z -  1)y 6 z6 =/~z3 + 8 a ( Z -  1)y 6 

(Z1, Z2, Z3) : (~Z-[- ~) ( ( Z -  1)-  1/2 z,1, Z -  1/2 z2, z3) 

(Z40 Z5, Z6) : ( (Z - -  1) 112 z4, Z 1 / 2  Zs, z6). 

Here and  in the sequel,  we use ~, fl, V, 6 def ined in (2) o f  Sect. 8 and  
e = (a - 1) (3a - 1); the involu t ion  - denotes  the sign flip a ~ - a. Then referr ing 
to Sect. 8, compute  

z a 2 - 1 2"~ 
Gz(O, O, O, z4, zs, z6) = Z ( Z -  1) 2aez] + 2agz 5 + ~ z6) 

/ 

and 

Gz(z) - Gz(0,  0, 0, z4, zs ,  z6) 

= zl gl (z) + z2g2 (z) + z3g3 (z) 

= Z(1 - Z )  ((a + 1) 3z 1 z 4 + (a - 1) 6z 2 z 5 + 4a z z 3 z6) 

-~ Z(1  - Z )  (1 - 9a z) ( 4 a 3 ( Z -  1)z~ + 4a6Z2z  2 +6SzZ) .  
2 ( ~ Z +  6) 2 

Moreover  

2 Z ( Z -  1) 3G z z,=z2=z~=o 
F I =  ( ~ Z + 6 )  

_ Z 2 (1 - Z)  2 ( 3 a -  1) (8a2gzzz 5 + 2 ( a -  1) 2 (a + 1) Z 3 Z  6 - -  (a-- 1) 3 z~) 
(~,z + 6) 

Fz =_ 2 Z ( Z -  1) 6G z 
(~z+ 6) z,=~,=z,=o 

_ Z 2 (1 - Z )  2 (3a + 1) (8a~zl z4 + 2(a + 1) 2 (a - l ) z a z  6 - 4a  3 (3a - 1)z z) 
(~,z + 6) 

8 z ( z - 1 )  ~ I 
F 3 ~ - - -  aLr z 

(~, ,z+6) z,=~2=z,=O 

Z 2 (1 - Z)  2 
( 8 a ( a - -  1)eZxZ4+ 8 ( a +  1)eZ2Z 5 -- ( a +  1)2 ez2 2) . 

(~z+  6) 

Making occas ional  use o f  the subs t i tu t ions  

3 Z = ( z ] + S z ) - z , ]  and  6 Z = ( z 2 + 6 2 ) - z ~ ,  

the quar t ic  Qz  eva lua ted  a t  z3 = 0 and z6 = 2y turns  in to  

O.zl~,=O,z~=2~- R + S (1) 
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with 

z~ z~" R - 2 z~ z~' (z, z,)  ~ (z~ + ~2) ((a + 1) z, z4 - (3 a + 1)z: z~) 

+ 2z~z~ (z2zs) 2 (z 2 - 62) ((3a - 1)z 1 z4 - (a + 1)z2zs) + 4a ( l  - 9a 2) (~Z+6) 2 

. ( ( ~ ( Z  1 Z4) 2 Z 2 + ~ (Z 2 ZS) 2 Zi)  (~ (1 - -  Z )  2 (z 1 z4) 2 z 2 "-I- ~ Z  2 (z 2 z5) 2 z2)~ 

\ - ~ ( ~ z  + ~)~ ~Iz~(z~ z,z~z~)~ ) 

_ 2=~,z~(5(z~z~)~z ~ +,~(z~z~)~z~ ) P~(Z) ~, P,(z ' )  z o  - z~  zg - z~,z'~(Tz + o) 2 ~ - - z ) ~  z'o 

and  

S = - ( ( 1  + a)z  1 Z 4 -~- (1 --  a ) z 2 2 5 )  (Z 124 --  Z2Z5) 2 . 

Acknowledgements. We thank W. Barth, L. Haine, N. Hitchin, H. Kn6rrer and D. Mumford for 
many helpful discussions and insights. We also thank J. Moser for inviting us to the 
Eidgen6ssische Technische Hochschute in the spring 1982, where much of this work was born and 
presented in the friendly and stimulating environment of the Mathematisches Forschunginstitut. 
PvM thanks Professor K. Aomoto and the Taniguchi foundation for organizing stimulating 
symposia at Kyoto and Lake Biwa in the summer 1984. We also thank S. D'Addato-Mu6s for 
transforming a messy hand written manuscript into an elegant type written one. 

These results have been announced in a note [2] and lectured on at ICM 83 (Warszawa) [16] 
and at the 1984 Royal Society Meeting on Solitons [17]. 

References 

1. Adler, M., van Moerbeke, P.: The algebraic integrability of geodesic flow on SO (4). Invent. 
Math. 67, 297-326 (1982) with an appendix by D. Mumford 

2. Adler, M., van Moerbeke, P.: Geodesic flow on SO (4) and the intersection ofquadrics. Proc. 
Natl. Acad. Sci. USA 81, 4613-4616 (1984) 

3. Adler, M., van Moerbeke, P.: A new geodesic flow on SO(4). Probability, Statistical 
mechanics, and Number theory Adv. Math. Suppl. Stud. dedicated to Mark Kac, edited by 
G.C. Rota, 9. New York, London: Acad. Press 1986 

4. Adler, M., van Moerbeke, P.: A full classification of algebraically completely integrable 
geodesic flows on SO (4). Preprint (1987) 

5. Adler, M., van Moerbeke, P.: A systematic approach towards solving integrable systems. In: 
Perspectives in mathematics. London, New York: Academic Press 1986 

6. Arnold, V.I.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: 
Springer 1978 

7. Barth, W.: Abelian surfaces with (1,2)-polarization. Conf. on Alg. Geom., Sendai, 1985 
8. Barth, W.: Moduli of vector bundles on the projective planes. Invent. Math. 42, 63-91 (1977) 
9. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978 

10. Haine, L., Geodesic flow on SO(4) and abelian surfaces. Math. Ann. 263, 435-472 (1983) 
11. Jacobi, C.G.J.: Vorlesungen fiber Dynamik. K6nigsberg 1866 Gesammelte Werke. 

Supplementband. Berlin: Teubner 1884 
12. Klein, F.: Elementar Mathematik vom h6heren Standpunkt aus. 4 th ed., Berlin: Springer 

1933 Vol. 1, pl. 3, Trigonometric, pp. 184-201 
13. Kn6rrer, H.: Geodesics on the ellipsoid. Invent. Math. 59, 119-144 (1980) 



Intersection of Four Quadrics in IP 6, Abelian Surfaces and their Moduli 85 

14. K6tter, F.: ~ber die Bewegung eines festen K6rpers in einer Fliissigkeit. I, II. J. Reine Angew. 
Math. 109, 51-81, 89-111 (1892) 

15. K6tter, F. : Die von Steldov und Lyapunov entdeckten integralen Fflle der Bewegung eines 
K6rpers in einer Fliissigkeit. Sitzungsber. K6nigl. Preuss. Akad. Wiss. Berlin 6, 79-87 (1900) 

16. van Moerbeke, P.: Algebraic complete integrability of Hamiltonian systems and Kac-Moody 
Lie algebras. Proc. Int. Congr. of Math., Warszawa, August 1983 

17. van Moerbeke, P.: Algebraic geometrical methods in Hamiltonian mechanics. (Royal Society 
Meeting, November 1984). Philos. Trans. R. Soc. Lond. A 315, 379-390 (1985) 

18. Moser, J.: Geometry ofquadrics and spectral theory, 147-188. The Chern Symposium 1979. 
Berlin, Heidelberg, New York: Springer 1979 

19. Mumford, D.: Appendix to [1], Invent. Math. 67, 247-331 (1982) 
20. Perelomov, A. M. : Some remarks on the integrability of the equations of motion of a rigid 

body in an ideal fluid. Funct. Anal. Appl. 15, 83-85 (1981), transl. 144-146 
21. Reid, M.: The complete intersection of two or more quadrics. Ph.D. dissertation (Cambridge 

University), 1972 
22. Tyurin, A.: On intersections of quadrics. Russ. Math. Surv. 30, 51-105 (1975) 
23. Adler, M., van Moerbeke, P.: Realizing the Kowalewski top and the Henon-Heiles system as 

a Manakov geodesic flow on SO(4) and a family of Lax pairs. Commun. Math. Phys. (1987), 
to appear 

24. Barth, W." Affine abelian surfaces as complete intersections of four quadrics. Math. Ann. 
(1987) to appear 

25. Horozov, E., van Moerbeke, P.: Abelian surfaces of polarization (1,2) and Kowalewski's top. 
Commun. Pure Appl. Math. (1988) (to appear) 

Received September 2, 1986 


