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We study results on a class of completely integrable systems, for instance, with Hamiltonian

Hx, ) =D ] +20,50—y) 7 a0 x2,

using quotient manifolds induced by symplectic group actions, which enables us to integrate the systems
and understand their complete integrability. In addition, we give a natural interpretation for the scattering

maps associated with these systems.

1. INTRODUCTION

In this short note we explain the results of “Some
finite dimensional integrable systems and their scatter-
ing behavior,” by the author, and of Refs. 2—4, in
terms of the abstract machinery set up in the paper of
Kazhdan, Kostant, and Sternberg, entitled “Hamiltonian
group actions and dynamical systems of Calogero
type,”® which explains systems first discovered by
Calogero and Marchioro,® and first discussed by
Moser, '

Briefly, the systems to be discussed have the proper-
ty that their equations of motion can be expressed as
matrix differential equations which can be easily inte-
grated, and moreover, the integration process is seen
to occur naturally in a space of much higher dimension-
ality than the systems in question. The systems to be
studied are thus interpreted as quotient systems of the
much larger systems, where the quotienting out process
is performed by a symplectic action of a group.

The process of quotienting out in mechanics, such as
using center of mass coordinates, i.e., ignoring the
position of the center mass, is indeed a common prac-
tice. We point out that usually quotienting out, or ignor-
ing certain data, is a way of ignoring the symmetries,
or integrals of the system, so as to arrive at some
basic equations to study. Here the quotienting out does
not really involve the integrals, but enables us to pass
to the ultimate system to be studied. The integrals are
in fact generated in a much more trivial way, for in-
stance through the use of natural Lagrangian submani-
folds and simple canonical maps, which of course makes
use of the quotient structure. In addition, the so-called
scattering maps of these systems have a natural inter-
pretation in this context.

A special case of this symplectic quotienting out pro-
cess is the coadjoint orbit construction of Kirillov
— Kostant (see Ref. 8). This construction is relevant in
the n-dimensional Euler spinning top problem of Arnold,
as was observed by Dikii in Ref. 9. In addition, the
Toda systems and their generalizations, as well as the
Korteweg— deVries equation and its generalizations
have orbit symplectic structures for their relevant
phase spaces. We refer the reader to Kostant,'® Mum-
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ford and Moerbeke, !* and the author!? for the former
case, and Ref. 12 for the later case.

In the first section we merely summarize the abstract
machinery of Ref. 5 of use in the discussion, referring
the reader to Ref. 5 and 13, and the paper of Marsden
and Weinstein,® for a fuller discussion. We then discuss
the results of Ref. 1, which entails referring to Ref. 1
frequently. Finally in Sec. 7, we discuss the results of
Olshanetsky and Perelomov,?'? in the above quotient
framework.

2. THE SYMPLECTIC STRUCTURES

We summarize and briefly discuss the necessary ab-
stract machinery needed to discuss Ref. 1. Let (M,w,G)
be a triple, with M an (exact) symplectic manifold with
nondegenerate closed 2-form w =d7, and G a Lie group,
with elements g, which acts on M with an exact symp-
lectic action. If / is the Lie algebra of G, with elements
denoted by ;:r; then the action of .G associates with each
& the Hamiltonian vector field &, and the Hamiltonian
function f( ) = - 7(F)( ), vields a Lie homomorphism,
i.e.,

{fZ'l’fz'z}:f[iL;z] [, ]the bracket in/, @2.1)

where { , | is just the usual Poisson bracket, i.e., if

Xpdw=df, then X, (f)=w(X, ,X,)={f,,f}. (2.2)
We define the moment map of Souriau,
& :M—-L*, by <I)(m)(£{):f;(m), (2.3)

with L* the dual of / . The group G acts on itself by con-
jugation, hence on / by the linearization of conjugation,
Ad, and on /.~ by (Ad)*; and its easy to see that {2.1) is
just the infinitesmal, and hence equivalent version of the
relation of equivariance,

Pog=(Adg~)*-d. (2.4)

We then form the orbit of o = /* under (Ad)*, ©,, and
assume V=9"1(0,) is a manifold. It is easy to see V is
a coisotropic manifold, i.e., (TV )¢ (TV,), for all
xc< V, with | denoting perpendicularity with respect to
w, and we can thus form S = V/[leaves of the foilation
induced by (TV)!], taking S to be connected and assum-
ing it to be a manifold. Then as a direct consequence
of (2.4), it’s not hard to see that S is a covering space
of 8/, as follows:

S9!, x0,, (2.5)
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where /G, means we identify elements x,yc M if they
lie on the same G, orbit, with G, the isotropy group of
a, i.e., the connected subgroup of G which fixes & by
its action on M. Incidentally, this shows S is a mani-
fold precisely if ©/, is one. By the coisotropy of V, and
the transitivity of G on the fibers ©,,w induces a
symplectic structure on ©),w, (i.e., we shall tacitly
assume w, is nondegenerate), where{ , }={, },isa
homomorphism. The structure (6}, w,), G shall be our
arena of activity. ‘

We note that by (2.1) and (2.2), functions in M which
are G invariant induce Hamiltonian flows on M which
pointwise fix the image of M under &, and hence they
induce Hamiltonian flows on ©},. In addition, such func-
tions, if they are in involution with respect to { , } on
M, are, via the homomorphism w— w,, automatically
in involution in ©},, thought of, by their G invariance,
as functions on ©,. This ends our discussion of quotient
structures.

In preparation, we discuss some M’s which shall
come up in the examples, '

Let F be the linear manifold of nX» matrices with
complex coefficients, and T*F==% be the cotangent bun-
dle of F, where we shall identify T*F~ FX F via the
bilinear (X, Y) =tr(XY). Then the complex symplectic
2-form w, naturally associated with T*F is

w=2dX ;ndY,;, =(dX,dY),

or alternately, we write Hamilton’s equations, with
Hamiltonian H=H(X,Y), as

X=H,, Y=H, 2.6)
where [Hy), =0H/3X;,;, etc. If we restrict w to
M, =T* ={(X,Y)|X=X*Y=Y*}, 2.7)

where * denotes taking the Hermitian adjoint, i.e., /

is just the self-adjoint matrices [which we shall identify
with the Lie algebra of the unitary group G=U, C)],

w yields a real symplectic structure, with Hamilton’s
equations remaining as given in (2.6), where it is under-
stood that H is real.

It is interesting to map &— & via
X‘ | x l |z,

Ty T xy| T g,

) (2.8)

and one computes
Hy :HZ1 tYH,, H, :H22X,

Z,=X=Hy, Z,=(XY) =H,Y - XH,.

Consequently, we may write Hamilton’s equations in
(Z,,2,) coordinates as

Z,=H,Z7, z, :[HZZ,ZZ] -Z,H, . (2.9)
Let us now restrict 7 to T*U(n), i.e., we identify
My=T*Uln, O)={(2,,2,)|Z, 2 =1,2} =2,}, (2.10)

and restrict

=

T ity =
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Note 7 is invertible, and of course we may just as well
identify 7-1(M,) with T*U(n). In that case, since by the
pairing ( , ),X, Y are the usual dual coordinates of
T*U(n), (2.9) restricted to M, precisely yields Hamil-
ton’s equations for the natural symplectic structure of
T*U(n). We must however put in the factor ¢ due to our
identification of the Lie algebra of U(n) with self-adjoint
matrices, or equivalently we may think of time as
being purely imaginary in (2.9). We omit the necessary,
but easy verification that (2.9) restricted to M, auto-
matically perserves M,, which is sufficient to insure
the restricted w is symplectic.

3. EQUATIONS OF MOTION FOR THE SIMPLEST
SYSTEM

We now apply the discussion of Sec. 2. We shall let
(M,w,G) of Sec. 2 be (M,,(dX,dY),U(n)) of Sec. 2.
Since M, =T*/ ~/ X/, / the Lie algebra of U(x), U(n)
acts naturally on / via Ad, i.e., by conjugation, which
extends to a Hamiltonian action on T*/ :

U:(X,Y)— (UXU,0YU"Y), UecUn),
of which the linear version is
U:x, V)~ (0,X], [U,Y)e T, 4.y
Hence, by (2.3), and the above
(X, V0) = f3(X, V) = ([0, X], ) =([X, ¥], D),
and so by the identification of / with / * through ( , )
a,=9"Ya)={X, V)|[X, Y]=a}, (3.1)
and we shall once and for all pick @ such that
la],=i1-6,), i.e., a=i{v*2 1},

with v R", v=(1,1,1...,1)7. Note that the isotropy
subgroup G, ={U|U xU?=q}, and we shall define the
effective reduced subgroup

G,={Ul U(v) =0}, with Lie algebra [o={B1B{v)=0}.
(3.2)
In Ref. 5 it is shown by a simple linear algebra argu-

ment that if [X, Y]=«, we can always find a unique
Ue G, such that
UXU- =diag(x,, %y, .. .,x,) =X, x,<x,,,, all i,
[UY U], =0,,y, il =8, ) (x, = x,)" =5 (3.3)

and hence 6, =&"'(a)/G, is effectively coordinatized by
(Gepsxyee ey x), (050 ,9))=(x,); and moreover it is
shown in Ref. 5, by a local argument, that

w— w, :ii)dx,./\dyi, i.e., (x,y)
=l

(3.4)

form a set of canonical coordinates. Hence in this case,
04, and thus S is a manifold (see Sec. 2), and w, is
nondegenerate, and hence symplectic.

We now wish to find functions on 8!, and by the dis-
cussion in Sec. 2, functions of the form

H=H(X,Y)=tr[P(X,Y)], (3.5)

with P(*, °) a noncommuting polynomial in its arguments,
will certainly do. If we take (3.5) as a Hamiltonian
function on M,, then (2.6) yields for Hamilton’s equa-
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tions,
X=n(X,7), Y=h(X,7) (3.6)

with #,(,), i=1,2, polynomials in their arguments,
uniquely determined by P(*,°). As mentioned,
H=tr[P(X,Y)] automatically can be t hought of as a
function on 6}, in fact via

hx,y) =tr[ P, 5)];

and we wish to determine the analog of (3. 6) for the
system on 6/, with Hamiltonian (3.7), or to put it another
way, we shall determine how (3. 6) transforms in &/.

3.7

So assume we are given initial data for Hamiltonian’s
equation with Hamiltonian %(x, y) in @/, which corre-
sponds to (¥(0), (0)), which we may identify, and thus
set equal to, (X(0), Y(0)) in M,. Under the Hamiltonian
R(x,y), (x(0), y(0)) —(x(t), ¥(¢)), and correspondingly
under the Hamiltonian H(X, Y), (X(0), Y(0)) — (X(t), Y()).
By the previous remarks, we must have

XN =UROU?, Y{)=UFHDU?, U=U@), (3.8)

with U(t) e G, [see (3.2)] uniquely defined, as the H(X,Y)
flow in the big manifold M, descends to the h(x, y) flow in
the little manifold ©/, through quotienting out via G,
Define B(t)c / , [see (3.2)] by U=- UB, and so by (3. 6)
and (3, 8),

X =UsFU™ =h,(X, Y)=Uh,(%, )U™,
where 6X=X —[B, X]; and so we have

5x=n,(%,7), 87=hy(X, 7). (3.9)
As a consequence of Hamiltonian’s equations on 9},
X=(3/3x)[h(x, »)], ¥ =~ (3/3y)h(x, y)], and thus we see
how (3. 6) is transformed in o). Note that from the
definitions of 6, (3.9), and B(v) =0 [see (3.2)], we can
immediately compute the unexpected functional depen-
dence, B(t)=B(x(t), ¥(¢)), since ¥ is a diagonal matrix.

We specialize to the case H=H,=tr{f(¥)], for which
we compute [see (3.6)] (X, Y)=f(Y), h,=0, and thus
conclude from (3. 6) and (3,9)»

X=f(Y), Y'=0,
5x=/'(3), 6y =0.

Since (3. 10) is immediately solvable, we have in fact
solved (3. 11) by the use of (3.8).

(3.10)
(3.11)

We also note that since the H /s clearly are in involu-
tion on M;, being function only of Y, that by the homo-
morphism w — w,, the s, hy= tr[f(»)], are in involu-
tion on €/, and in fact are generated by n independent
functions 1Y =tr[(F)], j=1,2,...,n. Thus h=tr(3y?)
gives rise to a completely integrable Hamiltonian sys-
tem,

4. SCATTERING MAPS
Upon inspection, one observes that the map
N:(X, V) = (V,X), 1],,:8, A, [see (3.1)], (4.1)

is a canonical map with multiplier -1 in M,, and hence
so is its projection 7, in 9}, since w —~w, is a homo-
morphism. This map, 7,, is precisely the scattering
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map for system (3. 11), with f(s)=3$s?, which is dis-
cussed in Ref. 1, Theorem 6, as was observed by J.
Moser (in a personal communication), More precisely,
in the above case, (3.11) with f(s)=3s?, one shows the
time evolution of the system is given by

(%, y)=(qt+ p+O(t™),p+ O(£?)), t—+e,
with
1, 1 (x(0), ¥(0)) ~ (g, p)-

Similarly one defines the 7/4 rotation map
(X, Y)=2MX+ Y, X =Y), A, 18,~8,, (4.2)

which is easily seen to be canonical with multiplier -1
on M, (here one uses that X, Y are Hermitian), and the
corresponding canonical projection, ﬁ,, on 95. M afx, v)
= 3tr(# - %?) in (3.7), then the time evolution of the
system (3.9) is given by

(x(2), (1)) = 27172 X (gte*t + prett, gre*t — pert) + Of(e™?'t!),
t—t

with
7, (x(0), (0)) = (g, p).

This is shown in Ref. 1, Theorem 4. Moreover, as one
easily checks

n=n°p°f?, p:(X,V)=(X,-Y),
hence

p=1,° pp0 T3,
and by (3.3), pylx,v)={x, - ).

Note that we have shown, by the time reversibility of
system (3.9), that ,: (g7, p7) —{¢", p*). These latter
statements are shown in Ref. 1, Theorems 5 and 6.

5. TWO EQUIVALENT SYSTEMS

We now investigate the systems on g/, with Hamiton-
ians respectively

hy(x, )= trlf(X - 9)],
ha(x, v) = te{f(3[x + 7]+ [x - ¥D}.

By the canonical map ﬁ, of Sec. 4, it is only necessary
to investigate case (a), and then via 7j,, transpose the
results to case (b). Also, via the transformation for-
malism (3.8), and (3.6)+~(3.9), it is only necessary to
study the equations on the full manifold M,, rather than
the quotient manifold 9. The formalism says substitute
6 for d/dt, and (x, V) for X, V), which enables one to
compute the generator B, and solve the equation on the
big manifold, M,, and via (3.8), to pass tothe solution
on the quotient manifold QJ.

(5.1a)
(5.1b)

We thus need only study the system on M, with Hamil-
tonian

Hl :H,-(X, Y) = tI‘[f(XY)],

and we first show the H/'s are in involution. Specifically,
assume

HY = tr[f,(x V)], H® =trlf,(XV)],
then, taking increments,

SHY =tr{f{(XY)-[6X - Y +X - 8Y [} +0®,

(5.2)
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where O® means terms of at least second order; and
we have

HP =Y fI(XY), HM=fIXY) X, (5.3)
etc., for H®, By {2.6) and (2. 2), the Poisson bracket
{, }of H3} H® ig given by [where (4, B) =tr(AB)]

HO O =(HM HEY - EHP, HP), and thus substituting
in (5.3), we find
{H®, B} =(YfL, £1X) - (X, YFY

=tr(fifiXY) - tr(f] f;XY) =0,
where we have used [f}(XY),XY]=0, and so {HV, H®}
=0.

We have thus, through 7, shown the H,’s, H,=H,
=tr{f(3[X + Y]+ [X - Y]}, are in involution, and thus by
the homomorphism w —~w ,, so are the {tr[f&y)]}'s
{tr[f(3[x + 7] [ - 5D]}’s, respectively; and so tr(3xy7),
tr(3[x+ 7). [¥-7]), respectively give rise to completely
integrable Hamiltonian systems on g/, as was observed

proven in Ref. 1. This is, thus, the second and more
pleasant proof of that fact.

Now by (2. 6) and (5. 3), Hamiltonian’s equations of the
system of (5. 2) are

X=f(XY):X, ¥=-Yf(XY) (5.4)
and since (XY) =0 as a consequence of [f’(XY), XY]=0,
we immediately integrate (5. 4) to obtain

X =exp(f(X,Yo)t) Xy, Y=Y, exp(-f(X,¥,)t), (5.5)
where the subscript o denotes evaluation at £ =0. Thus

by (3.9), the corresponding equations on g/, for the
systems of (5.1a) are

bx=f(xy)+x, oy =-3f"(¥y), (5.6)

while (3. 8) implies the time evolution of {5.6) is given
by

diag(x,, x;, . .., %, )(¢) = Utexp(f'(X, Y, )t) - X, U, ete. (5.7)

The canonical map 7 (5. 4), implies the corresponding
equations and time evolution for the system with Hamil-
tonian H, =tr[f(3[X + ¥]-[X - ¥])] are

X+Y) ==X+ 7] [X-¥]-[x+7Y],
X-1)'=[X~Y]-f(Elx+ 7] [x-Y]),
with
{slx+7]- X -1]f =0,
and
(X +Y)=[exp - {t7'(3[X, + ¥,]- [X, - Y, D}]- [X, + ¥,),
(X -T¥)= (X, - Y ] [explitf/[X, + Y, ]« (X, - ¥, ]},

where the changing of signs { - —¢, comes about because
il is the canonical multiplier — 1. We now use (3. 8) and
(3.9) to transpose (5.8) to o', i.e., system (5. 1b),

in particular concluding

20x=[%,7]- 1", 7)., 209=I[3,11-(F, %, (5.9)

where [A, B), =AB + BA, f'=f"(3[x+7]-[x-7]). Note the
simplicity of (5. 8) and (5.9), when f(s)=s. We could
equally well study the systems gotten by “stretching”
X —~u-X, in (5.1) and (5. 2), which tend to have compact

(5. 8a)

(5. 8b)
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behavior and thus give rise to periodic solutions for u
purely imaginary, see Ref. 1, in fact for f(s)=s,
p=v=1, all solutions are periodic with one and the
same nonprimitive period.

Note that our studying the case H=tr[f(X¥)],
h=tr[f(¥7)], makes it unnecessary to study the (Suther-
land) case where our manifold is

T*U(n,C)={(U,R)|UU* =1, R =R*},

and our Hamiltonian is H(U, R)=H,=tr[f(R)], with
Hamilton’s equations given by (2.9), (U,R)=(Zy, Z;);

for after the change { —if, we would get the same formal
results as (5.4)~(5.7), including the involution state-
ment, via the map 7, (2.8), where we identify (X, XY)
=(Z,,Z,) with (U,R). We note that the condition

(X,Y)e A,, namely [X, Y]=a is transformed into
[U,U'R]=¢, i.e., R-U'RU=q.

6. YET ANOTHER SYSTEM ON 4,

We now discuss the system of Sec. 6 of Ref. 1,

One may either regard the Hamiltonian of this system
on Q/ as
hy =tr[2(XF) + 7], (6.1)
or
By =tr(zX¥yx +X), (6.2)

as #u;, h, differ by a constant. Of course in the full mani-
fold the corresponding Hamiltonians,

H, =h[3(XY)+ X],
H, =tr[3(XY?X) + X],

(6.3)
(6.4)

are far from identical. Although it is shown in Ref. 1
that (6. 1) and (6. 2) are completely integrable systems,
we shall not show that (6. 3) and (6. 4) are completely
integrable systems, in fact we have not been able to do
this.

We shall study both (6. 3) and (6. 4) and then relate
them in case the associated differential equations on
9} have the same initial data. Since the calculations are
so similar to those of Sec. 5, we just give the results.
For simplicity we set XY =Z. Then with the Hamilton-
ian of (6. 3) we calculate, from (2. 6),

X=2ZX, Z=-X,

and since [X, Y]= o, (YX) =-X, we have s(XV?X) + X
=e¢,, e, a constant, and thus we arrive at, again using
[X’ Y]: a,

172 _1Zo_Z=ey. (6.5)

Letting Z = - 24;'4,, we find a', = 3a,e, - 3d,a, hence we
have

a, @,(0)
a,] \a,(0)

C,=D|(X,Y)=

rexp Cit, (6.8)
0, I

HXYX)+3X, —a/2

For the Hamiltonian of (6.4), we find

Z-[4YX,Z]=—X, X-[LYX,X]=4(XZ+ZX),

at£=0. 6.7)
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which motivates us to define the derivation 3,
d
5(+)=(+)-[47x,"],
and thus we have from the above,
0Z =~X, 6X=%(XZ+2X), (6.8)

Clearly, if U(0)=I, U=- U(3YX), we have the following
rule of transformations for matrices A =A(f): If
A=UAU", then (d/dt)}'A =U8AU-', From (6.8) we con-
clude, using that 8 is a derivation,

5(322+X)=0, 5(32%-62)=0; (6.9)
hence by our rule of transformation,
122 -Z=e,, e,a constant;
and thus letting Z = - 2a;*d,, we find
= %azezr
i.e,,
a, a,(0)
= . t
()= (6w) et
0, I
C,=D,(X,Y)= at £=0. (6.10)

X2+ 14X, 0

We now consider the case where the X(0) of both sys-
tems are the same in 9/, and moreover x,(0)>0. Then
since both Eqs. (6.3) and (6.4) are the same as seen in
9., they both must have the same long term behavior
of X as is projected down into ©7. In Ref. 1, Sec. 6, it
is shown that system (6. 3) and (6. 4) have the following
long term “‘scattering” behavior,

(logx, xy) = (£xt + B* + O(F!), tx + O(F2)), t—= o,

where logx =(logx,, ..., 108x,), xy=(XVy, ..+, %,Y,). By
arguments in that same section, it’s clear that the spec-
trum of C,, or alternately C,, precisely carry the data
A, and hence we must have

D\(X,Y)~D,(X, Y),

where ~ denotes spectral equivalence. By (6. 7), {6.10),
and (3. 8), this implies

D\(ZF)~ Dy(%, 7). (6.11)

Moreover it follows from (6.5) and (6.9) that D,(X, ),
D,(X, Y) are isospectral matrices of the differential
equations (6.3 and (6.4) respectively, and so in parti-
cular D,(x,¥), Dy(%,y) are for the (6. 1) and (6.2) flow;
and thus we arrive at
D,(x(0), 7(0)) ~ lim D (X(t), 5(£))~ lim Dy(¥(¢), 3(#)) . (6. 12)
te oo [ g
This yields the scattering behavior of system (6. 1) and
(6.2) as discussed in Corollaries 11.2, 11.3, of Ref. 1,
which essentially maintains that the system scatters as
if it is completely decoupled, and is just constrained to
maintain a fixed order on the line.

7. THE GENERALIZATIONS OF OLSHANETSKY
AND PERELOMOV

We now apply the considerations of Sec. 2, and Ref.
5, to generalizations of the Calogero— Moser systems
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in the context of complex semisimple Lie algebras as
considered by Olshanetsky and Perelomov.?:®> We shall
recover their results along the way. They actually work
in the setting of real Lie algebras, but the natural set-
ting for a full analysis is the complex Lie algebras and
their real conpact decompositions. We remark that we
shall make seemingly stronger hypotheses than they do.
As this section is in effect an abstraction of the work of

the previous sections, we shall tend to sketch arguments
in order to avoid unnecessary redundancy., We first need

to enumerate some well-known facts about Lie algebras
which we mention without proof (see Ref. 14).

Let / be a semisimple Lie algebra over C, the com-
plex numbers, with connected Lie group G and with
(nondegenerate) Killing form (X, ¥)=tr{adX adY). Note
{+, ) has the following important properties (where
[+, -] denotes the Lie bracket):

X, Y, z]y=(v[z,X])=(Z,[X, Y]),
(AdX,Ad, V) =(X,V), gcG.

Let # be a Cartan subalgebra of /., with A the corre-
sponding set of nonzero roots, and A the subset of
roots which are positive with respect to some ordering.
Pick root vectors E,—/®?, /* a root subspace corre-
sponding to the root 8 ¢ #*, having the following proper-
ties:

lEB1 E-s]:H(B) < h, <H(B)sH(B)> = 1’
(H,E ]=@E) E,=H,-E,, forallHeh.

(7.1)

(7.2)

Let / =/ denote the compact R-linear subspace

[ =2 R-(H®)+ > R(E,~E )+ R (i(E,+ E_));
BE 4 Bca T sea 1.9)

and thus we have the R-linear direct sum
[ =/ +{if), and moreover [/,/]c /. (7.4)

Let G denote the connected Lie group with Lie algebra
L.

From (7.2), we have (.,.),/,/ —~R and by the nonde-
generacy of {.,. },(+,» ) restricted to / X/, (if }x(if},
respectively, is nondegenerate (and real). This allows
us to identify T*(i/ )= (if )X (i/ )=M,. From (7.4), G
acts on (i/ ) via the adjoint action, which one extends
symplectically to T*(i/ ). Hence for the triple (M, w, G),
of Sec. 2 we take ((i /)x (i /), d(X,dY),G), where we
take (X, Y) as running coordinates on Mz = (i [)

x (i [). As in Sec. 3 we compute the associated mo-
ment map, using (7.1), & (X, Y)(g)={((X, Y], &); hence
by the nondegeneracy of {.,» >|L" [ Vo) ={(X, V)I[X, Y]
=al,ae [

We now pick a very special @, a =2.,c,C,(E,-E_,),
cy,#0, real, Be 4, satisfying:

Property A: Let G, be the connected isotropy group
of @ with Lie algebra / ,, which we assume is specified
by a relation of the form

L, ={g|Pg +LU-Pyg =0, gL}
where P,:[ —[ is specified by P,(SfH,+ZLE)=2ZfH,
[see (7.3) and (7.4)] I is the identity operator in /, and
L is some linear map; moreover, if [X, Y]= ¢, then
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there exists ge G, such that Ad X =¥ < h (which shall
imply ¥ is regular), The only freedom in the element g
is that we may specify which Weyl chamber ¥ is contain~
ed in, and we shall always take it to be the positive
Weyl chamber with respect to the ordering, %'; and then
only a finite number of choices remain for g.

Using Property A of @, we can easily compute G
=3-"(a)/G .. For if [X,¥]=a, we pick ge G, such that
AdX =X, hence Ad, Y =y +Z,c aCora (Eg+ E )=y, yeh.
Note automatically f&) =X%,#0, B 4, hence ¥ is regu-
lar. We shall specify g uniquely by requiring ¥,> 0,
8= A, We now pick an orthonormal basis of #, with
respect to ,+), {H;,H,,...H,}, and define x =37_ix,H;,
y=27.1y;H;. From the previous remarks it follows that
we may take (¥, ..., %, ¥1,...,¥,) = (x,v) as coordinates
on O,, noting that they are constrained by the open rela-
tions x;> 0, SE 4, to lie in the positive Weyl chamber.

We claim that the symplectic structure induced on
0 is w —w, =2 dx,Ady,. For if P,X=3X,H,, P,¥
=LY H;, w={dX,dY)=2dX;NdY;+{{I-T=X, I-P)Y
terms}; hence if we show for X, =¥ +¢T, T< (1-P,)GL),
that [X , ¥, [=a implies Ad, X =x+0(*)E N, g,=¢
g€ Gy, we will have proven our (local) assertion up to
“second order,” which is sufficient (see the argument
given in Ref, 5). First by the regularity of ¥ (and im-
plicitly the uniqueness of 8 ), it is easy to see— in fact
by sharpening the argument to be given— that & is
smooth in €, Let g =e+eV+ o(€e?), with the notation
having the obvious meaning. As we must have
Ad, F+€eT)=X+ekx, +O(&)< h, for all e small, it follows,
upon expanding the left side of the equation in ¢, that

[V,%]+T=% ch; but x= h implies [V,%]= (1 - P,}/, hence

P(V,¥]+ T)=0. Thus ¥, =0, as was to be shown.

For Hamiltonians on M, which induce Hamiltonians on
9., we pick the G invariant functions H=H(X, Y)
=tr[P(adX, adY)], with P a noncommuting polynomial of
its arguments. As is usual, we define the gradient of
Hc CY(M,) as follows: 6H={5X, Hy) + (Hy, 8, Hy,

Hy e (if ). This uniquely specifies Hy, Hy. Note the ad-
joint invariance of H, hence of 5H [and the adjoint in-
variance of (-, ") in (7.1)], implies

AdH (X, Y)=Hy(AdX, Ad,Y),
similarly for Hy. In particular if H = (a/2XX, X)
+(b/2)x{Y,Y), Hy=aX, Hy=bY. By the form of
w =(dX, dY), Hamilton’s equation on M, for the Hamil-
tonian H are

X=Hy(X,Y), ¥=-H,X,Y)

{7.5)

(7.86)

which upon using Ad X=X, Ad,F =Y and (7.5), are easi-
ly seen, as in Sec. 3, to transform on 9., to the equa-
tions

5§:HY(7—Q V)y
with

65:—}1}((})5): (7- 7)

5(.)=%_[3, J, #=-(L,), B®), 2(0)=e,

where L, : g, gg,. Of course we have as usual on g/,

d ] a3

dog k) v 3k g,

dt dy; dt ox, ’
h=h(x,y) =H(X,7).
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Since ¥ k is regular, (7.7) implies [B, %]
=(1~P,)Hy(%,7); and thus determines (1-P,)B, and hence

B, since Be/ ,, as a function of ¢ through B =B(x, y).

Since automatically the H'” = (1/27)tr(ady)¥/,
J=1,...,n, are in involution on M,, so are the A’
=(1/2j)tr(ad¥)*, j=1,...,n, on @,; and hence they give
rise to a completely integral system on g/. The corre-
sponding Hamiltonian differential equations are (where
the subscript 0 shall denote initial conditions), X
=H{)(Y), ¥=0, hence X(t)=HY)(Y,). t+X,, Y({)=Y, on
M. Therefore, on @/, we have 0¥ =H4(¥), 65=0, hence
MO=Ad_, ., ([H G +7,), 7O =Ad _ 7,
b=(d-/dt)~B,,+], for an appropria{e g(t). In particu-
lar for j=1, H{'(Y)=7Y, and thus the above implies

6¥=7, 07=0, hence 5(¥-{7)=0; (7.8)
which in particular implies (1 - P,)B, =X =, ¥57cs
X(EB_E-B)° It is easy to show (see Ref. 1), that

(0, y(IN (gt +p+ oY), p+(E?), t—=;  (1.9)

and that as a consequence of (7. 8) and {7. 9) the canoni-
cal map (x, ») = (g, p) is just the projection of the canon-
ical map 5:(X, ¥) = (¥, X) onto 0/, (se Sec. 4 of Ref. 1).
Note that from (7.2) &'V = 1(§, ) = 327,32

+ Zgo aCa%, 7, which is just the Calogero— Moser poten-
tial of Olshanetsky and Perelomov. We remark that the
proof of complete integrability given here is the only
algebraic proof we know of, i.e., the only one that
doesn’t depend on the scattering map.

If we let H=3({Y, Y) - aXX,X)), then Hamilton’s
equations on M, are X =Y, Y =a2X; which transform to
the equations ¥ =7, 6V=a’¥, on O/, with the appropri-
ate 5(+)=(d-/dt)~[B,-]. Since 6¥=y, B=B(x,y)
=Bylx,v), the By going with the Hamiltonian 4{!’. Note
the Hamiltonian function on ), is 2" - (a*/2)27 42
Since on My, 2X(t) = (X, + a-'Y)e™ + (Xg~ a-1¥)ets,
2x(1) = Adyt[(vy + a1¥)e’® + (%, - a7, )e ™), §=- (L), B,
etc., for ().

The scattering maps for this system are discussed
precisely as in Sec. 4 using the maps 7 and #, the
crucial tool being 6[(¥+ a¥)e™*]= 0, (see Ref. 1). The
preceding equation also implies tr{ad(y + ax)

-ad(y - ax)l’, v=1,...,n, are integrals for the above
system. If we let a=ib, b real, in the above equations,
we get a periodic system with period 27/b.

We now consider the Sutherland type systems. Name-
ly, let us identify, with the usual symplectic structure,
T*G =G x(i[)=M,, via the (nondegenerate) inner pro-
duct — &+, ), (;/)x/), Where M, has the running coordin-
ates (@, R). The group G acts on itself by conjugation
which extends naturally to a symplectic action on
T*G =M,, via g:(Q,R) |~ (gQg-?, ad, ,R); and thus we
have for the triple of Sec. 2, (M, w,G)=(GX(i/),
d(KR, @-dQ)), G) (see Ref, 2). Note that the linearized
version of this group action about (¢, R) is just the
previous group action. The discussion we give here is
towards a different purpose than the one in Sec. 2, and
of necessity proceeds differently, although the formulas
are of course related. Since iw (g, z)=—(dR, Q-dQ)

+(R, @-1dQ A @-1dQ), if (my, 8,), (n,,8,) are elements of

T(T*G)iq,my =L + (i V=], we have

iw((nl, B])y (772, 82))] (Q.R} :<R’ [771, 772_» + ((Bz; 77;) - (Bj_y 7]2))-
(7.10)
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Given H =H(Q, R)c C*(M,), we define the gradient of
H in the ususal way (which is slightly different from the
way of Sec. 2),

iGH:<6R,HR>+<HQ, Q-10Qy, HRE[_, HQE(‘LL); (7.11)

and from the definition w(Xy, ¥)=Y(H), one finds
Xy=(Lo)kHgdo + (R, Hg]- Hy)og (7.12)

and thus we haye the Poisson bracket {-, +},

{FO FO = (X, X, ) =iR, [F2 FP]) (7.13)

+Hi(FG, FRY - (FE, FE).

Note that if H=H(R) is an adjoint invariant function,
then if g(f) =e + gt + o(t?), 0=(d/dt)(iH(AdR))
=({g,R}, Hp =(R, [Hg, &), for all g/, hence by (7.13)
all adjoint invariant functions of R are in involution.

As is easily computed (see Ref, 5), the moment map
for our action is given by & (Q,R)=Ad,R - R [note
®(@Q,R)e (if ). We now pick an o :ZacA c(E,~E_,),
c,#0, real, g e A, satisfying:

Property B: Let / , be specified by a relation of the
form given in Property A, such that if AdgR~-R=¢,
then there exists a g€ G, such that gQg-t=expig),q< k
(which shall imply 7 is regular), The only freedom in g
is that we may specify which Weyl chamber ¢ is con-
tained in, and we shall always take it to be in the posi-
tive Weyl chamber, k%, with respect to the ordering,
and then only a finite number of choices remain for g.

As usual we compute 0},=3-'(a)/G,. If Ad,R-R=gq,
by Property B there is a g€ G,, such that gQgo'=exp
=exp2ig, q < h. If we apply Ad, to the equation AdgR - R
=a, we have Adq.-1,(Ad.R) - (Ad R) =9 and so upon
makmg use of the identity Adg,xE, =¢"™.E,, HEh,
which is a consequence of (7.2), we conclude,

Ad R =P+ s 4ics (erf@oBy 1 e1TeE ) 5
(eias — e-iaﬁ)

Pech.

Note that automatically Gs#nm, ne Z, f< A, and thus in
particular g is regular; and by property B, we may also
assume g3 >0, B A, I now {H,,... ,H, Eis an ortho-

normal basis of h, let g=24,,q,H,, p=~Lg.PH,, then
from the previous remarks we may take (q,, ..., qn,
Prs- -+ 2Pa)=(q,p) as coordinates on ©), subject to the

open relations gz >0, gg#n%, nc Z, e A.

The symplectic structure « — w,=2Z%dg, A dp,. To
establish this (local) fact, it is sufficient to show that
at the point (@,,R,) = {exp(2ig +¢T), R,}, e h, P,T=0,
& (Q,,R.) =a, the (R,[n,,n,]) piece in (7.10) is really
“second order” in e. This reduces to showing, as in the
previous case, that for the (unique) gy=e+eV +0(?)
discussed in Property B, g exp(2ig +eT)g! = exp[2ig
+0(e?)], which upon linearizing about €=0 is just the
familiar fact that P([V,2ig] +T)=0.

We now consider the adjoint invariant Hamiltonians on
M,, H? =(1/2j)tr(adR)¥, j=1,2,...,n, which as
dlscussed before, are in 1nvolut10n Smce the H'9’s are
G invariant funct1ons
h,‘”(q,p)=(1/2j)tr[(ad;)“],j:l,. .,n, on 6%; which
moreover are in involution, thus giving rise to a com-~
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they project down to Hamiltonians,

pletely integrable system, From (7.12), the H’s lead
to the Hamiltonian differential equations on My, R=0,
=(L,),Hy (where we have used the fact [R, HY’]= 0)
whwh Tas the solution R(t)=R,, Q(t)=(Lq )y exp{(Hz(Ro) 1).
To study the equations projected to ©,, set gQg(t)
=exp(2ig(t)], g(0)=e, ¥=~(Lg),B,. The previous equa-
tions imply, in a now familiar manner, 7= Ad,-17,,
q=—-(i/2) exp™ (g7 (Lo, exp[Hg (ro)1)]g), Qo = exp(2ig,).
The associated differential equtions for 1’, q, are easily
computed using g Qg =exp(2ig), Ad,_R=7, and the
adjoint invariance of H=H'V’(R), i. .. , Ad HY(R)
:H}Q”(Ad‘R). They are found to be
57 =0, 2ig=adyB, - B, +H,(7,), @=exp(~ 21'(7();1 14)
In the case of j=1, HP(R) =R, and (7.14) implies
(1 - P)B, = - 54c o ¢s{Eg — E_y) sing;, which thus deter-
mines B,;, We also note that ¢« =0, 5a =0, hence
6(y + L) =0 for all the above differential equations; and
S0 ¥ =7+ 3a =p + 5T, 4Cs COL Gy (E, + E ) satisfies the
“Lax equation” 67+ =0 for all the above flows. Finally
note that ") = K7, P = 3Tp% + 58,2 45 cot?,, the «“Suther-
land” potential. We tnay of course scale these algebraic
equations, ¢ —ag, and take a purely imaginary to get
the noncompact case, or let a =0 to get the x-% potential,
which corresponds to linearizing the group action about
(e, R).

We remark that although Properties A and B imply
the computational “Lax” criteria of Olshanetsky and
Perelomov, (see Refs. 2, 3), and hence seem stronger,
we suspect that in fact they are equivalent. In practice,
from the remarks in Ref. 5, it is clear that in order
to find o satisfying Properties A and B, one should
look for o’s whose orbits have dimension Z{rankcé} un-~
der the adjoint action of G. Thus one would expect that
the o’s in Properties A and B are the same up to the
factor v— 1. It is of course an interesting question to
investigate o, ’s for symplectic actions other than the
ones discussed here, and hopefully find more integrable
systems. Finally, we mention that given a concrete
matrix representation of 5, we can of course represent
the preceding equations as matrix equations; and hence
recover results of preceding sections.

ACKNOWLEDGMENTS

I wish to thank J. Moser, who suggested this research
and encouraged it, and C, Conley, at whose seminar
at the University of Wisconsin at Madison, these results
were first presented.

M. Adler, “ Some finite dimensional integrable systems and
their scattering hehavior” Commun. Math. Phys. 55, 295—
30 (1977).

2M. A. Olshanetsky and A. M, Perelomov, “Explicit solutions
of some completely integrable systems,” Lett. Nuovo Cimento
17, 97--101 {1976).

3M. A, Olshanetsky and A. M. Perelomov, “Completely inte -
grable classical systems connected with semisimple Lie
algebras, Il.,” Moscow Institute of Theoretical and Experi-
mental Physics, ITEP-27 {1976).

4K, Sawada and T. Kotera, “Integrability and a solution for
one~dimensional N~particle svstems with inversely quadratic
pair poteatials,” preprint, Tokyo University of Ed. TUETP-
75-10.

M. Adler 66

Downloaded 20 Apr 2007 to 129.64.99.137. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



5D, Kazhdan, B. Kostant, and S. Sternberg, ‘“Hamiltonian
group actions and dynamical systems of Calogero type,” to
appear in C, P, A, M.

SF. Calogero and C. Marchioro, “Exact solution of a one-
dimensional three-body scattering problem with two-body and/
or three-body inverse square potential,”” J. Math. Phys. 15,
1425—30 {1974).

'J. Moser, “Three integrable Hamiltonian systems connected
with isospectral deformations,” Adv. Math. 16, 1—23 (1975)

83, Marsden and A. Weinstein, “Reduction of sympletic mani~-
folds with symmetry,” Rep. Math, Phys. 5 (1974).

L. Dikii, “Hamiltonian systems connected with the rotation
group,” Funk. Anal. Ego Prilozh. 6, 83—4 (1972).

67 J. Math. Phys., Vol. 20, No. 1, January 1979

0B, Kostant, to appear.

1p, Mumford and P. Moerbeke, “The spectrum of difference
operators and algebraic curves,” to appear in C.P. A. M.

2M, Adler, “On a trace functional for formal pseudo-differen-
tial operators and the symplectic structure of Korteweg—
deVries equation,” to appear.

3G, Marle, «“Symplectic manifolds, dynamical groups, and
Hamiltonian mechanics,”” in Differential Geometry and Rela-
tivity. edited by M. Cahen and M. Flato (Reidel, Massa-
chusetts, 1976).

13, Helgason, Differential Geometry and Symmetric Spaces
(Academic, New York, 1962), Chap. III.

M. Adler 67

Downloaded 20 Apr 2007 to 129.64.99.137. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



