Calculus Placement Exam Brandeis University

Instructions. This is a multiple choice exam. There are five possible answers to each question and only one answer is correct. If you do not know the answer to a question, you should **not** guess.

Take the exam without referring to any books or notes. **Do not use a calculator.** There is no time limit for the exam. If you didn't study calculus in high school, take Part A of the exam only. If you have studied calculus, take Part A and then do as much of Parts B and C as you can.

PART A

- 1. Simplify $(-2x^3)^4$. (a) $-8x^{12}$ (b) $-16x^7$ (c) $-16x^{12}$ (d) $16x^7$ (e) $16x^{12}$
- 2. Simplify $\frac{x^{-5}y^2z}{x^{-3}yz}$. Note: It's OK to have a negative exponent in your answer.
 - (a) $x^{-2}y$ (b) $x^{-2}yz$ (c) $x^{-8}y^3z^2$ (d) $x^{15}y^3z$ (e) $x^{-2}z^2$
- 3. Simplify $\frac{1}{x+1} + \frac{4}{x-3}$. (a) $\frac{1}{x^2 - 2x - 3}$ (b) 5x + 1 (c) $\frac{5x}{x^2 - 2x - 3}$ (d) $\frac{5x+1}{x^2 - 2x - 3}$ (e) none of the above
- 4. Factor $2x^2 + 7x 4$. (a) (2x - 1)(x - 4)(b) (2x + 1)(x - 4)(c) (2x + 2)(x - 2)(d) (2x + 4)(x - 1)(e) none of the above
- 5. Simplify $\frac{\frac{1}{x} \frac{1}{x+h}}{h}$. (a) 1
 (b) -1
 (c) $\frac{1}{x(x+h)}$ (d) $\frac{h^2}{x(x+h)}$ (e) x(x+h)
- 6. Evaluate $16^{-\frac{3}{4}}$.
 - (a) -12 (b) 8 (c) -8(d) $\frac{1}{8}$ (e) $-\frac{1}{8}$

- 7. Find the solution(s) of the equation $x^2 + 5x + 1 = 0$.
 - (a) -2 and -8(b) -1 and -6(c) $\frac{-5 \pm \sqrt{21}}{2}$ (d) $-5 \pm \frac{\sqrt{21}}{2}$ (e) no real solutions

8. Find the solution(s) of the equation $\frac{x+3}{x^2-16} = 0.$ (a) -3, 0 (b) -4, 4 (c) -3, 4, -4 (d) -3 (e) no real solutions

- 9. Find the equation of the line through the points (-4, 3) and (2, 0).
 - (a) y = -2x(b) y = -2x + 2(c) $y = -\frac{1}{2}x + 1$ (d) $y = -\frac{1}{2}x + 2$ (e) $y = -\frac{1}{2}x$

10. What is the slope of the line shown here?

(a) 3 (b) -3(c) $-\frac{1}{3}$ (c) -1

(a) Graph 1 (b) Graph 2 (c) Graph 3 $y = ((x+1)^2 - 2 \text{ if } -3 \text{ if } x_y \le 1)((x-1)^2 - 2 \text{ if } -1 < x < 3) \\ y = (-(x-1)^2 + 2 \text{ if } -1 < x < 3)$ (d) Graph 4 (e) Graph 5 y = 0**y** = 0 x = 0 $\mathbf{x} = \mathbf{0}$ Graph 2 Graph 1 $\mathbf{x} = \mathbf{0}$ Graph 3 Graph 4 Graph 512. Let $f(x) = \begin{cases} x^2 - 5, & \text{if } x \le -1 \\ x + 4, & \text{if } -1 < x < 2. \\ 3, & \text{if } x \ge 2 \end{cases}$ Find f(2). (a) 3 (b) 6 (c) -1

(c) $\frac{1}{3}$

(d) 6 and 3 (e) none of the above

13. Let
$$f(x) = \frac{1}{x^3 - 1}$$
 and $g(x) = 7x - 11$. Find $f(g(2))$.
(a) $\frac{3}{7}$ (b) $\frac{1}{26}$ (c) $\frac{1}{8}$
(d) -10 (e) none of the above

14. Let $f(x) = 3x^2 - x$. Find f(x+h) and simplify.

(a) $3x^2 + 3h^2 - x - h$ (b) $3x^2 + 6xh + 3h^2 - x - h$ (c) $3x^2 + 3h^2 - x + h$ (e) $3x^2 + 3h^2 - x$

15. Suppose that the angle θ has measure 135°. What is the radian measure of θ ?

(a) $\frac{3\pi}{4}$ radians(b) $\frac{\pi}{4}$ radians(c) $\frac{2\pi}{3}$ radians(d) π radians(e) none of the above

16. Let θ be an angle. Which of the following statements are true?

- I. $\tan \theta = \frac{\sin \theta}{\cos \theta}$ II. $\csc \theta = \frac{1}{\sin \theta}$ III. $\sec \theta = \frac{1}{\cos \theta}$ IV. $\cot \theta = \frac{1}{\tan \theta}$ (a) only I is true (b) only I and IV are true (c) only II and III are true (d) none of them is true (e) all four statements are true
- 17. Which of the following statements are true? I. $\sin \frac{\pi}{4} = \frac{1}{2}$ II. $\cos \frac{2\pi}{3} = -\frac{1}{2}$ III. $\tan \pi = 0$ (a) only III is true (b) only I and III are true (c) only II and III are true (d) none of them is true (e) all three statements are true

18. How many solutions does the equation $2\sin\theta = -1$ have if $0 \le \theta \le 2\pi$?

(a) two solutions(b) one solution(c) four solutions(d) eight solutions(e) no solutions

19. Evaluate $\log_2 \frac{1}{8}$.

(a) 3 (b) -3 (c) $\frac{1}{4}$ (d) -2 (e) none of the above

20. Write the expression $3 \ln x - \ln(x+1)$ as a single logarithm.

(a) $\ln \left(x^3(x+1)\right)$ (b) $\ln \left(3x(x+1)\right)$ (c) $\ln \left[\left(\frac{x}{x+1}\right)^3\right]$ (d) $\ln \left(\frac{x^3}{x+1}\right)$ (e) $\ln \left(\frac{3x}{x+1}\right)$

(a) 0 (b) 1 (c) 10 (d) $\frac{1}{10}$ (e) no real solutions

22. Evaluate $\ln(\sqrt[3]{e})$.

(a) can't be evaluated (b) $\sqrt[3]{e}$ (c) e (c) e

23. Find the solution(s) to the equation $\ln(x+2) = 3$.

(a) 1 (b) $3 - \ln 2$ (c) $e^{3 - \ln 2}$ (c) $e^{3 - \ln 2}$ (c) $e^{3 - \ln 2}$ (c) $y = 2^{-x}$

24. Which of the graphs show below best represents the graph $\partial f y = \log_2 x$?

PART B

1. Find
$$\lim_{x \to 2} \frac{x-2}{x^2 - x - 2}$$
.
(a) 0
(b) 3
(c) $\frac{1}{2}$
(c) $\frac{1}{2}$

2. Find
$$\lim_{x \to +\infty} \frac{x^3 - 5}{4x^3 + x + 1}$$
.
(a) $\frac{3}{4}$ (b) $\frac{1}{4}$ (c)
(d) 0 (e) $+\infty$

1

8. Consider again the function f(x) whose graph is shown in problem 7. At which points is the second derivative f''(x) negative?

(a) at x = 2 and x = 3.5 (b) at x = 1, x = 2 and x = 3.5 (c) at x = 6 only (d) at x = 7 only (e) at x = 6 and x = 7

9. Let $f(x) = \ln x \cdot \cos x$. Find f'(x).

(a)
$$\frac{1}{\cos x} \cdot (-\sin x)$$
 (b) $\frac{1}{x} \cdot (-\sin x)$ (c) $\frac{1}{x} \cos x - \ln x \sin x$
(d) $\frac{1}{x \cos x} (\cos x - x \sin x)$ (e) none of the above
10 Let $u = 4e^{\tan x}$ Find $\frac{dy}{dx}$

(a)
$$4e^{\tan x} \cdot \sec^2 x$$

(b) $4e^{\tan x} \cdot \frac{1}{1+x^2}$
(c) $4e^{\tan x}$
(c) $4e^{\tan x}$

11. Let $f(x) = \sin^{-1} x$. Find f'(0).

(a)
$$\pi$$
 (b) 1 (c) $\frac{1}{2}$
(d) 0 (e) none of the above

12. The equation of the line tangent to the graph of $f(x) = x^2 + 5x$ at the point with x-coordinate x = 2 is:

(a)
$$y = 9x - 14$$
 (b) $y = 9x$ (c) $y = 9x - 4$
(d) $y = -\frac{1}{9}x - \frac{2}{9}$ (e) none of the above

13. Let $f(x) = x^3 - 3x$. Which of the following statements are true?

I. f(x) has local maxima at both x = -1 and x = 1. II. f(x) has a local minimum at x = 1 and an inflection point at x = 0. III. f(x) has both a local minimum and an inflection point at x = 0.

- (a) only I is true(b) only II is true(c) only III is true(d) only I and III are true(e) none of the statements is true
- 14. A commercial nursery has 1000 yards of fencing which the owners plan to use to enclose as large a rectangular garden as possible. The garden will be bounded on one side by a barn, so no fencing is needed on that side. How large will the garden be (in square yards)?

15. The width of a rectangle is increasing at a rate of 2 cm/sec, and its length is increasing at a rate of 3 cm/sec. At what rate is the area of the rectangle increasing when its width is 4 cm and its length is 5 cm?

(a) $31 \text{ cm}^2/\text{sec}$	(b) $23 \text{ cm}^2/\text{sec}$	(c) $5 \text{ cm}^2/\text{sec}$
(d) $22 \text{ cm}^2/\text{sec}$	(e) none of the above	

- 16. A rock is dropped from a height of 400 feet and falls toward the earth in a straight line; t seconds after it is dropped, it has fallen a distance of $s(t) = 16t^2$ feet. At what speed is the rock traveling when it hits the ground?
 - (a) 20 ft/sec (b) 32 ft/sec (c) 640 ft/sec (c) 640 ft/sec

PART C

1. Which of the following gives the area between the curves $y = x^2$ and y = 2x over the interval [-2, 2]?

(a)
$$\int_{-2}^{2} (x^2 - 2x) dx$$
 (b) $\int_{-2}^{2} (2x - x^2) dx$ (c) $\int_{-2}^{0} (x^2 - 2x) dx + \int_{0}^{2} (2x - x^2) dx$
(d) $\left| \int_{-2}^{2} (x^2 - 2x) dx \right|$ (e) none of the above

- 2. Suppose that f(x) is a continuous function with the following properties: $f''(x) = \cos x$, $f'(\pi) = 2$ and f(0) = 4. What is $f(\pi)$?
 - (a) 2 (b) 2π (c) $\pi + 2$ (d) $6 + 2\pi$ (e) 0

3. Suppose that the function f(x) is defined by $f(x) = \int_1^x \frac{e^t}{t} dt$. Find f'(x).

(a) $e^x \ln x$ (b) $e^x \ln x - \frac{e^x}{x}$ (c) $\frac{e^x}{x}$

(d) $\frac{e^x}{x} - e$ (e) the integral can't be computed, so it's impossible to give the answer

4. Let $F(x) = \int_0^x f(t) dt$, where f(t) is the function shown below. Which of the following statements are true?

5. Suppose that $f(x) = \frac{x}{x^2 + 1}$. Find $\int_0^2 f'(x) dx$. (a) $\frac{2}{5}$ (b) $-\frac{28}{25}$ (c) $\frac{28}{25}$ (d) 0 (e) none of the above

6. Which of the following statements about indefinite integrals are true?

I.
$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$
 II. $\int f(x)g(x) dx = \int f(x) dx \cdot \int g(x) dx$
III. $\int f'(g(x))g'(x) dx = f(g(x)) + C$ IV. $\int [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C$

(a) only I and II are true(d) only I, II and IV are true

(b) only I and III are true(c) only I and IV are true(e) only I, III and IV are true

7. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$ and y = x over the interval [0, 1] around the x-axis.

(a)
$$\int_0^1 \pi (x^2 - x^4) dx$$
 (b) $\int_0^1 \pi (x - x^2)^2 dx$ (c) $\int_0^1 \pi (x^2 - x^4)^2 dx$
(d) $\int_0^1 \pi (\sqrt{y} - y) dy$ (e) $\int_0^1 \pi (y - y^2) dy$

8. The integral $\int \frac{1}{x \ln x} dx$ can be found by

- (a) making the substitution $u = \ln x$
- (b) making the substitution $u = \frac{1}{x}$
- (c) using integration by parts, with $u = \ln x$ and dv = x
- (d) taking the reciprocal of $\int x \ln x \, dx$
- (e) none of the above
- 9. The integral $\int x \sin x \, dx$ can be found by
 - (a) making the substitution u = x
 - (b) making the substitution $u = \sin x$
 - (c) using integration by parts, with $u = \sin x$ and dv = x dx
 - (d) using integration by parts, with u = x and $dv = \sin x \, dx$
 - (e) none of the above

10. Find
$$\int_{0}^{\ln\sqrt{3}} \frac{e^{x}}{1+e^{2x}} dx$$

(a) $\ln 2$ (b) 1 (c) $\frac{\pi}{12}$
(d) $\frac{\pi}{4}$ (e) 0

11. Find
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$
.
(a) 0
(b) 1
(c) $\frac{1}{6}$
(c) $\frac{1}{6}$
12. Find $\int_{-\infty}^{\infty} \frac{1}{-2} dx$.

13. Which of the following improper integrals converge to a finite value?

(I)
$$\int_{1}^{\infty} e^{-x} dx$$
 (II) $\int_{-\infty}^{\infty} x^{3} dx$ (III) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} dx$
(a) I only (b) III only (c) I and II only (d) I and III only (e) all of them

14. The second order Taylor polynomial at x = 0 for $f(x) = e^{-x}$ is

(a)
$$1 - \frac{x^2}{2}$$
 (b) $1 + \frac{x^2}{2}$ (c) $1 + x + \frac{x^2}{2}$
(d) $1 - x + x^2$ (e) $1 - x + \frac{x^2}{2}$

15. Which of the following series converge?

(I)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 (II) $\sum_{n=1}^{\infty} \frac{1}{n}$ (III) $\sum_{n=1}^{\infty} \frac{n}{2^n}$

(a) (I) only(b) (III) only(c) (I) and (II) only(d) (I) and (III) only(e) all of them

16. The radius of convergence of the power series $\sum_{n=0}^{\infty} x^n$ is

- (a) 0 (b) 1 (c) 2
- (d) 3 (e) ∞

Math 20a Placement Exam (Part D)

1: Consider the linear system

The solution set to this system in vector form is given by:

(a)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} z \right\}$$
(b)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 4 \\ 0 \end{pmatrix} z \right\}$$
(c)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} z \right\}$$

2: Compute the following determinants.

(a)
$$\begin{pmatrix} 6 & 1 \\ 2 & 3 \end{pmatrix}$$

i. 20
ii. 18
iii. 16
iv. 12
(b) $\begin{pmatrix} 3 & 1 & 2 \\ 3 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$
i. 3
ii. -6
iii. 0
iv. 6

3: Let S be the plane given in parametric form by

$$\left\{ \begin{pmatrix} 1\\1\\3 \end{pmatrix} + \begin{pmatrix} 1\\1\\0 \end{pmatrix} y + \begin{pmatrix} -4\\0\\1 \end{pmatrix} z \mid y, z \in \mathbb{R} \right\}.$$

Does the vector $\begin{pmatrix} -4\\1\\4 \end{pmatrix}$ lie on the plane S?
(a) YES (b) No

 \mathbf{Over}

4:	Find the dot product a $\mathbf{b} = 4\mathbf{i} - 3\mathbf{k}$.	and cross produc	t of the vectors \mathbf{a} =	$= \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and		
	(a) $\mathbf{a} \cdot \mathbf{b} =$					
	i. 10	ii. $4\mathbf{i} - 2\mathbf{j} + 1\mathbf{k}$	iii2	iv. $(6, 5, 8)$		
	(b) $\mathbf{a} \times \mathbf{b} =$					
	i. $-6i - 5j - 8k$	ii. $(6, 5, 8)$	iii. 10	iv2		
5:	Let $\mathbf{v} = \langle 1, \sqrt{3} \rangle$ and $\mathbf{w} =$	$=\langle 3,\sqrt{3}\rangle.$				
	(a) The length of \mathbf{v} , $\ \mathbf{v}\ $	$r \parallel =$				
	i. 4		ii. $\sqrt{4}$			
	(b) Compute the dot p	roduct $\mathbf{v} \cdot \mathbf{w}$.				
	i. 10		ii. 6			
	(c) Compute the interi	or angle between	\mathbf{v} and \mathbf{w} .			
	i. $\pi/6$	ii. $\pi/4$	iii. $\pi/3$	iv. $\pi/2$		
6:	Write the parametric eq $Q = (1, 1, 7).$	quation of the lin	ne passing through A	P = (5, 0, -2) and		
	(a) $\begin{cases} x = 1 + 4t \\ y = 1 - t \\ z = 7 - 9t \end{cases}$		(b) $\begin{cases} x = 5 - 2t \\ y = \frac{t}{2} \\ z = -2 + \frac{9}{2}t \end{cases}$			
	(c) Both of the Abo	OVE	(d) None of the	ABOVE		
7:	Find the equation of the plane containing the three points $P = (-1, 2, 3), C = (0, 4, 1)$, and $R = (-1, 3, 2)$.					
	(a) $-x + y - z = 0$		(b) $y + z = 5$			
8:	For which value(s) of k	are the vectors ($\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ k \\ 2 \end{pmatrix}$ perpend	licular?		

- (a) 7 (b) 0 (c) 7 & 0 (d) -2
- **9:** (a) Find the orthogonal projection of $\langle 4, 1, 0 \rangle$ onto the plane 2x 2y + 2z = 0.
 - i. $\langle 2,2,0\rangle$ ii. $\langle 1,-1,1\rangle$ iii. $\langle 3,2,-1\rangle$
 - (b) Find the point on the plane x y + z = 0 which is closest to the point P = (4, 1, 0).

	i. ((2, 2, 0)) ii.	(1, -1, 1)) iii. ((3, 2, -1))
--	------	-----------	-------	------------	----------	------------	---

(c) Compute the distance between P = (4, 1, 0) and the plane x - y + z = 0.

i. 1 ii. $\sqrt{17}$ iii. $\sqrt{3}$