
Tutorial : Self-limiting Assembly Thermodynamics and Kinetics

January 8, 2024

The following exercises are adapted from a review article by Michael Hagan and Gregory Grason [1]

1 Equilibrium characteristics of Self-limiting Assembly

The free-energy for a self-assembling system of sub-units with a total mass fraction of Φ which form aggregates
of sizes n with mass fraction ϕn respectively, is given by
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where the first term in the RHS corresponds to the aggregation energy and the second term to a translational
entropy of the sub-units. v0 is known as the standard state volume of the subunit in the system and ϵ(n) is the
per-subunit aggregation free energy in a cluster of size n.

(a) Law of Mass-action : Minimize the free energy with respect to the mass fractions {ϕn} under the mass-
conservation constraint i.e.

Φ =

∞∑
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ϕn (2)

and derive the relationship between the mass fraction ϕ1 of monomers and the mass fraction ϕn of an
n-mer.
Hint : This is typically done with a Lagrange multiplier that enforces the constraint as given
below :
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(b) Equation of state for Self-limiting assembly : Using the law of mass action in the mass conservation
constraint determines the equation of state for the system. The specific form of the equation of state
should depend on the form of the aggregation free energy per subunit ϵ(n). Assume that assembly leads
to just one target size nT for the resulting aggregate.

1. Sketch out a rough plot of the aggregation free energy ϵ(n) as a function of aggregate size n that
leads to a single target size.

2. Write down the modified form of the mass conservation constraint( Eq. 2) under the assumption
that you only manage to achieve assembly at an aggregate size n∗ for assembly ( recognize the caveat
that n∗ can possibly be different from nT ). Use the law of mass-action in this modified form to
obtain the equation of state.

3. You can simplify the form of the equation of state by writing it in a non-dimensional form with a

characteristic mass-fraction ϕ∗ =
[
n∗e

−n∗βϵ∗
]1/(n∗−1)

. (Hint : All mass-fractions should be in
dimensionless form by scaling with respect to ϕ∗ )

4. With the above form, comment on what mass fraction dominates the total mass fraction when
ϕ1 ≪ ϕ∗ and when ϕ1 ≫ ϕ∗ . Discuss the significance of ϕ∗

(c) Optimal aggregate size and fluctuations in aggregate size : While in the previous section we assume that
only two states exist in equilibrium, we must recognize that there will be some finite dispersity in the size
of the aggregate, arising from thermal fluctuations. We must hence construct the equilibrium distribution
of aggregate sizes ρn = ϕn

n and make an approximate estimate of the fluctuations in the size from this
distribution to determine how robust the assembly is.

1. Write down the aggregate distribution ρn = ϕn

n according to the law of mass action to obtain ρn as
a function of n and ϵ(n)
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2. Write an approximate form for the per-subunit aggregation energy ϵ(n) in the vicinity of the target
size nT .

3. Use this form to determine an approximate form for the distribution ρn. Does the form look familiar
?

4. Based on the form derived above, can you calculate the relative dispersion in size ⟨∆n2⟩1/2
nT

? how does
it depend on ϵ(n) and nT ? What does this tell us about reducing fluctuations in target aggregate
size ?

2 (Optional) Stat Mech Primer for Assembly

The following is an optional exercise that will walk you through deriving the form of the free energy in Eq.1 :
Consider N non-interacting particles in a volume V at temperature T .

(a) Assuming the particles have volume v0, what is the total number of positional microstates accessible to a
single particles, that is, how should it scale with V and v0? And what about N indistinguishable particles?
Hint: imagine dividing your large volume V up into smaller volumes of size v0.

(b) Given the number of microstates available to the particles, write down the entropy and free energy. Recall
that F = −TS and S = kB lnΩ, where Ω is the number of microstates (we ignore E since there are no
interactions or external potentials). The Stirling approximation lnN ! ≈ N lnN −N will come in useful.
Note that Φ = Nv0/V is the volume fraction of our particles. Also, write the free energy density F/(V/v0)
in terms of Φ. This term captures the role of translational entropy.

For our purposes, we will have a certain number N of identical subunits that can bind to eachother to form
assemblies composed of n subunits, which we call n-mers. For simplicity, we assume that all the n-mers are
noninteracting and the only interactions are between binding subunits within each n-mer, which gives these
n-mers a per-subunit free energy ϵn.

(a) Let Nn be the number of n-mers in the system. Write down the free energy of the n-mers Fn = En−TSn

in the system, where En is the energy is the total energy of an n-mer related to ϵn and Sn is the same as
derived above.

(b) Let us define ϕn = Nnnv0/V as the mass fraction of n-mers, which can be thought of as the total volume
fraction of subunits inside n-mers. Rewrite the n-mer free energy density Fn/(V/v0) in terms of ϕn. Do
you notice the extra factors of n−1? Why do they appear in the translational entropy of n-mers?

(c) Finally, since we can have assemblies of size n = 1, 2, 3, . . . , what is the total free energy of the system with
a subunit mass distribution ϕn? If the total number of subunits in all the n-mers is fixed

∑
n Nnn = N ,

write down the constraint on the mass distribution ϕn if Φ = Nv0/V is defined as the total subunit volume
fraction.
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