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MOTIVATION

- Modern deep learning is very successful in solving practical
and challenging problems, e.g., protein structure prediction,
drug discovery, self-driving car, unsupervised machine
translation, etc.

- Data-driven models is an important approach when
mathematical modeling becomes extremely challenging.

- Well-designed physics-informed machine learning models
could assist theory discovery.

FORECASTING ACTIVE NEMATICS

* Dynamics of active nematics by a sequence of images

T L DR L DA TR A R LS IAE T e

:Q?& AN N iﬁi_ - \ oo "r": \:@_ ?‘L‘ ii %— &;q.‘. }\ k«-—-

S U AT | N Ny B g 22X
N . o | " \

\ - .

. ! ( |
M WA oS S/
Time

* Respective local orientation of microtubules over time
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Pixel intensities indicate local orientation of MTs: Black (O deg) to White (180 deg)

RESEARCH PROBLEMS

» Data-driven model to predict future states of the system, e.g.,
predict future sequence (images) given a recent sequence

» Better generalization (i.e., require minimal re-train when
applied on different datatsets)

* Interpretability (physically explainable)

 Extendable in control problem (later phase of the project)

Contact: phutran@brandeis.edu
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DEEP LEARNING

Convolutional Neural Network for Learning Spatial Patterns

Convolution Pooling Fully Fully
Connected Connected

: : _ Output
. o J _ _

Convolution Pooling

rrrrrrr - - memy

Feature maps Pooled ; -
. Dogl0.1) !
Feature Maps ! Cc;%[{ﬁ, 4]} :

. Deer(0.94)
' Lion(0.2) !

Feature maps Pooled

Input Image
Feature Maps

Image Source - hitps://vinodsblog.com

Recurrent Neural Network for Learning Temporal Dynamics
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Accuracy vs. Interpretability

High Neural Networks . . )
g ] S Characteristics of Highly
Accurate Models
o Ensemble Methods: * Nondinear relationships
(XGBoost, = Mon-smooth relationships

Random Forest) * Long Computation Time

Kernel Based Methods
§ (Support Vector Machine)

Decision Trees
provide good

Accuracy

Accuracy with very
high interprerability

® Decision Trees

Characteristics of Highly
Interpretable Models

= Linear & Smooth

=  Well defined relationships
» Easy to compute

» Logistic Regression
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Towards physics-informed model

 Perform data augmentation using domain knowledge in physics

* Design specific network architectures that imitate certain physical
properties of the system

* Include well-known physics constraints in the loss function used to
train the model’s weights
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RELEVANT WORK
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CURRENT APPROACHES

* The transition from an image to the next one is generally complex
(high dimensional and high degrees of freedom)

* Project the images to some latent space such that the dynamics in the
latent space is less complex than that in the original one

* Try to integrate physical time and space derivatives into the recurrent
neural network architecture

- Current tasks: data gathering and analysis, representation learning
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