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What is SINDy?

Sparse identification of non-linear dynamics (SINDy) is an ad-
vanced regression technique that takes raw experimental or nu-
merical data as input and returns a sparse best-fit PDE model.
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How it works

Consider a fluid system where we have velocity and density data,
u(x) and ρ(x), at space-time coordinates x = {x, y, z, t}, and
we want a PDE that describes ∂tu. Without further informa-
tion, the underlying PDE will take the form

∂tu =
N∑

n=0
ξnfn(u,ρ, ∇u, ∇ρ, . . .),

where fn are different terms with coefficients ξn.

Steps for SINDy:
1 Create a library of relevant PDE terms, fn

(requires some knowledge of system)
2 Numerically differentiate and sample data
3 Perform sparse regression to find ξn

⇒ most coefficients will be zero!
For example, a simple library could be of the form,

∂tu = ξ0u + ξ1∇ρ + ξ2ρu + . . . + ξNu
9

If we sample M different space-time points,
∂tu(x0)
∂tu(x1)...
∂tu(xM)

 =


u(x0) ∇ρ(x0) · · · u9(x0)
u(x1) ∇ρ(x1) · · · u9(x1)...

... . . .
...

u(xM) ∇ρ(xM) · · · u9(xM)




ξ0
ξ1...
ξN


,

which, in simplified notation, is
Ut = ΘΞ,

where Ut is a length M vector, Θ is an N × M matrix, and
Ξ is a length N vector of unknown coefficients. By performing
sparse regression on Θ (e.g. ridge or lasso regression), we can
obtain Ξ with most entries equal to zero, whereas standard least
squares would overfit, resulting in non-zero coefficients even for
terms that don’t aren’t important to the system.

2D active nematic simulations

We obtain data by numerically solving nametic hydrodynamic equations,
∂tQ + u.∇Q = S (∇u,Q) − DRH

0 = −γu − ∇p + η∇2u − α∇.Q

∇.u = 0,

where
H = κ∇2Q −

(
a1Q − a2

(
Q2 − 1

3
tr(Q2)I

)
+ a3 tr(Q2)Q

)

S(∇u,Q) = Ω.Q − Q.Ω + λ (Q.E + E.Q) + 2λ

3
E − 2

3
λ(E : Q)I

The reliability of SINDy can be tested by adding artificial noise to the data
and analyzing how the accuracy of the fit changes. The noise is multiplicative
and is drawn from a normal distribution with mean 1 and standard deviation
σ, where 1% noise corresponds to σ = 0.01.

0 2 4 6 8
Number of terms

0.0

0.1

0.2

0.3

0.4

0.5

1
R

2

3% noise
2% noise
1% noise
0% noise

• With clean data, SINDy works!
• Modest noise ( 3%) renders

SINDy ineffective
• Even with only 1% noise, high order

terms are lost

Noise mitigation

Averaging: We can reduce noise in our measurements by integrating over a
small window, Ω, with a distribution or “test function”, ω(x). Returning to
our example library, this would look like∫

Ω
ω ∂tudx =

∫
Ω

ω
(
ξ0u + ξ1∇ρ + ξ2ρu + . . . + ξNu

9) dx
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• Even 50% noise results in a
reasonably good fit

• Easy to implement
• Suited for long-wavelength physics

(hydrodynamics)

Weak form

If we choose our test function so that it has zero weight on the
boundary of the integral window, ∂Ω, then we can easily transfer
derivatives to ω and off of noisy data via integration by parts.
For example,∫

Ω
ω ∂tudx = ωu

∣∣∣
∂Ω −

∫
Ω

∂tω udx = −
∫
Ω

∂tω udx,

where the second term is equal to zero since ω(∂Ω) = 0.
In addition to reducing noise, using the weak form of a PDE gives
lattitude to remove troublesome variables from equations. For
instance, the pressure is a term in the Navier-Stokes equation but
it is often impossible to measure experimentally. By choosing a
divergence-free vector as our test function,∫

Ω
ω. (∇p) dx = ωp

∣∣∣
∂Ω −

∫
Ω

p (∇.w) dx = 0,

which makes removal of certain immeasurable variables, such as
pressure, possible.

Outlook

We have a useful technique that has been extensively tested on
2D simulation and experimental data by Joshi, et al. Moving
forward, we will further develop SINDy for generic 3D active
systems, including:
• Experimental active nematic liquid crystals
• Experimental active nematic elastomers
• Emergent physics from particle-based simulations
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