Geometrically programmed self-limited assembly of tubules using DNA-origami colloids

Thomas E. Videbæk¹, Daichi Hayakawa¹, Huang Fang¹, Douglas Hall², Botond Tyukodi¹, Chris Sigl³, Elija Feigl³, Hendrik Dietz³, Seth Fraden¹, Michael Hagan¹, Gregory Grason², Ben Rogers¹

1 b Brandeis University

2 b U Mass Amherst

3 b Technical University of Munich

Introduction

Biological systems have adapted to self-assemble many different objects with self-limiting dimensions, such as spherical viral capsid, filamentous microtubules, or planar lipid membranes. The goal of IRG1 is to engineer systems that will exhibit pathways to self-limited assemblies.

Microtubules

Exonuclease

CCMV (virus)

Ribosome

One thrust to achieve this is varying the curvature of assembly subunits; this allows for different motifs of structure formation. Here, we are looking into the creating monomers for tubule formation.

Goal: Can we make synthetic, self-limited assemblies?

Designing building blocks for tubules

Design DNA origami monomers with:

- Valence limited interactions
- Specific, lock-and-key interactions

Realization of tubule assemblies

MgCl₂ concentration adjusts inter-particle binding strength.

There is a goldilocks zone where monomers assembly into tubules.

(10,0)tube can reach several microns in length (1000s of monomers!)

Despite designing monomers for a specific tubule type, we find a distribution of different assembly states.

Distribution of states inherent in self-limited assemblies

Improving specificity with multiple monomer species

Experimental realization for two-species assembly

Using the two-species tiling above, we expect odd n states to be excluded.

In experiment, we see a reduction of states the way we expect!

Future Directions

Seeded assembly

Structural precision

By adding more types of triangles, not all vertices are the same, limiting what states a tubule can form .

When the distance between similar vertices matches the length scale of fluctuations, we expect nearly full specificity for assembly.

