Droplet coarsening In an active biomimetic fluid
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Abstract Conclusions/Future Work

In this work, we design a 3D composite system which elucidates _ _ _
how the advective environment of the cell cytoplasm contributes to -  We have deagned a composite system which
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more quickly at high ATP concentration. The scaling exponent of = @ — . regardless of ATP concentration
the organelle coarsening is shown to not depend on ATP * Droplet motion Is timescale dependent, with
concentration, however. Going forward, this system will be - - _ _ _
leveraged to design a composite system to control active stresses B oneentration diffusion at Iong time scales
internally through active phase separating droplets. * |n the near future, we plan to vary the active
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