Self-organized buckling patterns underlie transition from macroscopic extension to contraction in active nonlinear elastic networks

ABSTRACT

Many fundamental cellular processes require exquisitely orchestrated large-scale reorganization of structural filaments. One mechanism of reorganization is via internal forces generated by motor proteins. The transmission of these forces is mediated by a ailure in such networks, we examine a model nonlinear elastic network subjected to an internal force dipole. Such networks exhibit non-monotonic elastic deformation in response to the applied force. We observe a transition from linear and non-linear extensility to global contractile behavior. We demonstrate this emergence of contractile behavior is associated with a large-scale transformation of the underlying lattice which transition from extensile flows to global contraction [J. Berezney et. al., arXiv 2110.00166]. This work underscores the importance of cytoskeletal networks and metamaterials whose failure modes and nonlinear mechanics can be engineered to generate complex and adaptive large-scale phenomena.

EXPERIMENTAL MOTIVATION

Active composites are a mixture of active microtubules and passive actin. Experiments done with active composites show a wide range of dynamical organizations (as shown below).

Left: Low actin concentration results in extensile flows. Middle: Intermediate actin concentration shows aster formation, and subsequent coexistence of extensile and contractile regions. Right: High actin concentration results in global contraction.

Here we attempt to understand the global contractile behavior using a network model of non-linear springs where the springs are allowed to buckle at their midpoints.

THEORETICAL MODEL

Fig.1: Schematic of non-linear spring network. Fig.2: (Ronceray et. al., PNAS, 2016) Far-field dipole response shows contractile behavior for local extensile dipole. Fig.3: Rectification observed in our simulation where far-field stress is measured using the following formula.

$$
\sigma_{i}=\sum_{\text {bonds }\{i j\}} \sigma_{i j}=\sum_{j} r_{i j} \otimes F_{i j}
$$

SELF-ORGANIZED BUCKLING PATTERNS

SPATIAL STRESS PATTERN

$$
\begin{gathered}
\sigma_{i} \sigma_{i j}=-f_{j} \\
\sigma_{i j}(x, y)=\mathcal{G}_{i j x}(x, y) f_{x}
\end{gathered}
$$

\& Spatial pattern of the three independent components and trace of stress tensor in a linear-spring network (no buckling).
A linear network is characterized by Asotropic elastic modulus described completely by two Lamé parameter
$\lambda=G=\frac{\sqrt{3} \mu}{8}$

Component of stress perpendicular to the direction of applied force dipole for a non-linear network ($\kappa / \mu=1 \mathrm{e}-3$) shows significant deviation from that of a linear network for large magnitudes of applied force dipole.

Buckling renormalizes the elastic moduli creating a highly anisotropic one that leads to rectification.

ACKNOWLEDGEMENTS

I would like to thank my P.I. (Prof. Chakraborty) and collaborators for their support. This project is funded by Brandeis Bioinspired MRSEC (NSF-DMR 2011846).

