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Our model is adapted from [4], which considered assembly of conical subunits on 
curved nanoparticles. We use subunits of different sizes to represent hexamers and 
pentamers, and let the hexamer-hexamer and hexamer-pentamer interaction strength 
vary. We use HOOMD to simulate their assembly on the surface of a spherical 
nanoparticle for 800,000 non-dimensional time units. 

We construct local MSMs at each node in 
the feasible 2D parameter space (left) by 
sampling trajectories. Radial basis function 
interpolation is used to evaluate the 
transition probabilities away from the nodes. 
The interpolants can be used to build an 
estimate of the system transition matrix for 
non-sampled parameter values.

The probability of the target state can be 
extracted for any parameter set and time, 
either to inform experimental setups or help 
infer unknown system parameters. 
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For the best choice of interaction strength parameters, the target T=4 capsid has a yield 
of around 20%. It is more likely, however, that the system ends up in a configuration 
consisting of one or more defects. Can we achieve more efficient target assembly by 
computing an optimal time-dependent protocol for the interaction strengths? 

Self-assembling systems are typically designed to optimize the equilibrium stability of 
a target structure; however, equilibrium is not always reached on experimentally 
accessible timescales. Such systems may get stuck in long-lived metastable states, 
called kinetic traps, resulting in yields much smaller than the equilibrium estimate [1].

An increasingly studied approach to this 
problem is to introduce some 
time-dependent driving force to the 
system to drive it out of equilibrium and 
help facilitate formation of the target 
state.  This method has seen success in 
simulations [2] and experiment [3], but 
the choice of time-dependent protocol 
falls on the user. Here we use tools from 
optimal control theory and Markov State 

Image: Bupathy et al,. PNAS (2022) [2]Model (MSM) analysis to compute protocols 
that are optimal for a given target state. 

We illustrate our approach on a model for T=4 icosahedral capsid growth, showing 
improved assembly yields and rates with the computed protocol. These techniques 
could be used within IRG1 to improve yields of capsids (Fraden lab) and tubules 
(Rogers lab) constructed from triangular sub-units, as well as in the Rogers lab for their 
experiments with DNA coated nano-particles.
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Schematic of interactions between the two 
subunit types and the spherical 

nanoparticle. 

The evolution of the probability distribution over coarse-grained states, p, is given by the 
Forward Kolmogorov Equation as

Here, P is the transition matrix evaluated at the system parameters at time step n, 
represented by θn. With the probabilities constrained by this equation, we can pose an 
optimization problem to maximize the probability of a target set of states, B, at the final 
time, N, by computing

Derivatives of this probability are inefficient to compute directly, so we instead use an 
adjoint method. The adjoint problem is the Backward Kolmogorov Equation, given by

This equation is solved backward in time for the adjoint variable, F, which represents the 
conditional expectation of the indicator function for the target set, where Xk denotes the 
state of the system at time k. Derivatives can now be efficiently computed using the 

expression on the left. We use this to perform gradient 
descent over the protocol path. A number of penalty 
functions can also be included; for example, to ensure 
smooth protocols that are physically realizable in an 
experiment. 

The computed optimal protocol begins with parameters that give fast but low yield 
assembly, then transitions to parameters that give slower, but higher yield, assembly. 

To test our method, we sample 250 trajectories according to this protocol, and find that 
the estimated yield matches well with the MSM prediction. By comparing to simulations 
using the best constant protocol, the optimal protocol indeed achieves a higher yield at 
the final time, as well as a faster average assembly rate. 

One of the ways this protocol boosts the target yield is by ratcheting the system out of 
some of the defect states. This can be seen below as a decrease in the probability of 
some states over time. Below, we also show snapshots along the transition pathway from 
a state with two defects into the target state. 

Time

Markov State Models (MSMs) are a 
powerful tool for coarse-graining the 
dynamics of complex molecular systems 
into a form that is tractable to analyze [5]. 
The state space is discretized into a set of 
macro-states, and the dynamics are 
encoded by estimating the probability to 
transition between each of these states after 
a lag time, 𝜏. 

For our example, we define discrete states 
according to the number of each type of 
subunit attached to the nanoparticle, as well 
as a measure of the T=4 icosahedral 
symmetry of their configuration. 
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