

Nematic Liquid Crystals

Kemkemer et al, 2000

Nematic phase

ernator.science/sl/dalise/liquid-crystals-the-beautiful-state-of-matter

Conventional liquid crystals (LC) are different speeds along or director of the LC

. I hypothesize that molecular signals will also propagate anisotropically through dense tissues composed of elongated cells, due to the excess gap junctions along the cell long axis. Consequently, I hypothesize that the architecture of the cellular network will also impact how cells sense and propagate signals.

Information Propagation through cell tissues as a model for active nematic liquid crystals Brandeis <u>Annemarie Winters</u> and Guillaume Duclos*

Department of Physics, Brandeis University, Waltham, MA

information propagation among

Biological Networks

Once small-scale networks are understood, we can move toward studying bulk orientations, building our way up to topological defects such as those found in active nematic liquid crystals.

1. Sun et al, Phys. Rev. Lett, 2013 2. Duclos et al, Nature Physics, 2013 Saw et al, Nature Physics, 2017

Acknowledgments

want to thank the Duclos Lab for being incredibly supportive 🙂

References