
Active nematics are intrinsically unstable and unconfined active 
nematics generate turbulent flows. In order to harness the 
chemomechanical abilities of  these materials to do useful 

work, these dynamics need to be controlled.
The Brandeis Active Matter IRG2 will address this

grand challenge of  design and control of  active stress, to 
harness the autonomous dynamics of  active

materials.
To control the flow and suppress turbulence we developed a 
2D active nematic system consisting of  microtubule bundles 

driven by light activated kinesin motor clusters. Here, 
we investigate how the intensity of  uniformly applied light 
affects active nematic properties. We use particle image 

velocimetry to calculate the nematic speed and the nematic 
director field to extract spatial and temporal nematic 

characteristics, such as the defect density. We find that at low 
light intensities, the intensity of  light is proportional to the 

nematic speed and the defect density.

Our question?
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Motor protein walks over the microtubule by hydrolyzing ATP 
and creates extensile system. 

2D active nematics  have +1/2 and -1/2  topological defects  
which exhibit the active nematic dynamics.
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Our goal and experimental details

Active nematic formed by 
optogenetic kinesin

The goal is to control the microtubule-motor protein system 
dynamics using light to confine the system with light and tune 
the speed and the active nematic dynamics. 

To control the light intensity in space and time, we used a 
Digital Light Processor (DLP). DLP is a projector composed 
of  digital micro mirrors and a blue light LED (𝜆 = 460 nm). 

Type equation here.

Results

To maintain the active nematic structure for each 
intensity constant, after every cycle light is on to the 
max intensity. 
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Light-activated Kinesin Tune Defect Density And Nematic Speed

The effect of  solid walls on the defect density 

The defect density is higher on the walls 
for both ± !
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Oil curvature close to the wall

The sample's oil height is not 
uniform, is curved at the 

edges, and decays 
exponentially. 

It decays 5 times 
faster than the 

defect density at 
the boundaries

Increasing blue 
light intensity 
leads to higher 

velocity

Start-up timescale for different intensities

The duration to reach 
steady state velocity 

depends on the intensity.
Stopping timescale for different intensities
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The time it takes for 
the system to stop is 
independent of  the 
intensity. 

The amount of  activation intensity 
tunes the defect density: 

higher light intensity increases the defect density 

+1/2 and -1/2 defect density for different 
intensities

Nematic speed for different intensities
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