Topological structure and dynamics of three-dimensional active nematics

DMR MRSEC 1420382

2020

Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. Here, force-generating microtubule bundles are dispersed in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, chargeneutral disclination loops that undergo complex dynamics and recombination events. This work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms.

¹G. Duclos, ²R. Pelcovits, ²T. Powers, ¹A. Baskaran, ¹M. Hagan and ^{1,3}Z. Dogic, ¹Brandeis University, ²Brown University, ³UCSB

Deformations in 3D LCs Duclos et al. used high-resolution microscopy to image the director field. They located the extended defects (the linear structures) formed by internally driven bending instabilities.

Defect connections

The wedge-twist loop connects $+\frac{1}{2}$ and $-\frac{1}{2}$ defects like a Möbius strip. This smooth evolution can only occur in 3D materials and not in thin films.

