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I. BROWNIAN DYNAMICS SIMULATIONS DETAILS

Lag times were measured following the procedure de-
scribed in Fig. 3, with completion fractions as a function of
time averaged over up to 600 independent simulations at each
subunit volume fraction. For simulations with volume frac-
tions v0 ≤ 0.006, obtaining a statistically relevant measure-
ment of the lag time according to the procedure described in
Fig. 3 becomes computationally challenging, due to the low
nucleation rate. Specifically, it is difficult to estimate the lo-
cation and value of the maximal assembly rate due to noise.
This limitation was overcome by fitting a pre-assumed form
for the completion fraction (the CNT model) to the simula-
tion measurements. As our intention was to obtain as accurate
an estimate of the lag times possible, rather than to determine
whether or not the CNT model is consistent with the simula-
tion results, we used f0 and c0 as fitting parameters indepen-
dently for each subunit concentration. While it is beyond the
scope of the present work, a global fit of the CNT model to
the simulation data would enable a useful test of some model
assumptions.

The crossover point cc shown in Fig. 1b was calculated ac-
cording to Eq. 5, with the initial nucleation rate τmin

nuc estimated
by measuring the nucleation rate as a function of the free sub-
unit concentration in the steady-state ensemble simulations.

FIG. 6: The capsid geometry in the Brownian dynamics simula-
tion model is comprised of 30 subunits (each of which represents
a protein dimer) in an icosahedral shell. The center of each subunit
roughly corresponds to a 2-fold axis of symmetry (at dimer inter-
faces) in a T=1 capsid (e.g. see Ref. [1] and the VIPER database
[2]). Subunit sizes are reduced to aid visibility.
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FIG. 7: The steady-state volume fraction calculated from the steady-
state ensemble simulations is shown as a function of the total subunit
volume fraction v0.

II. CALCULATING ELONGATION RATES WITH
INTERMEDIATE-DEPENDENT FORWARD RATE

CONSTANTS

For the CNT model and the extended NG model considered
next, the forward rate constants are proportional to the perime-
ter of the partial capsid intermediate, fn = f0ln, with the
perimeter ln = 2[πn(N−n)/N ]1/2. In the limit fc1 À belong
we can calculate the average capsid size n(t) as a function of
time

dn(t)
dt

= f [n(t)]− b[n(t)] ≈ f0
4πR

N
[N(n(t)−N)]1/2

(10)

where fn is written as f [n(t)] to emphasize that we have
temporarily taken the continuum limit. We have neglected
b[n(t)] in the approximate equality on the right and assumed
N À nnuc. This expression can be integrated to give n(t) =
N sin2(f0t/2R), which can be inverted to yield the average
elongation time

τelong = 0.5(πN)1/2/(f0c1) (11)

In Fig. 5 and Fig. 8, we see that elongation times for the CNT
model and the extended NG model can be approximated with
Eq. 2 by setting f = 2f0(N/π)1/2.
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FIG. 8: (a) Numerical results for the NG model with intermediate-
dependent association rate constants. The median assembly times
τ1/2 and the lag times τlag calculated from the completion fraction
(PN) and calculated light scatter (ILS) are shown as functions of ini-
tial subunit concentration c0 (the light scatter results closely track
the completion fraction as in Fig. 4). The estimates for the median
assembly time (Eq. 4 with nnuc = 5) and lag time (Eqs. 2 and 11)
are shown as dashed lines, and the estimates for the crossover con-
centration cc and kinetic trap concentration ckt ( Eq. 5) are shown as
symbols (defined as in Fig. 4). (b) Numerical and theoretical esti-
mates are shown for median assembly times, and lag times are com-
pared to the theoretical estimate of the elongation time, for the NG
model extended to enable association of dimers with partial-capsid
intermediates.

III. EXTENDING THE NG MODEL TO ACCOUNT FOR
INTERMEDIATE-DEPENDENT RATE CONSTANTS AND

BINDING OF OLIGOMERS

In this section we consider two alterations to the NG model
to further evaluate if our conclusions are model dependent.
Intermediate-dependent association rate constants. First,
we relax the assumption that the association rate constant
is independent of intermediate size by setting the forward
rate constant as in the CNT model, fn = f0ln, with f0 =
105/[2(N/π)1/2]. As for the CNT model, the numerically
calculated lag times for this model agree quite well with the
theoretical estimate of Eq. 2 (Fig. 8a). The estimated me-
dian assembly time τ1/2 calculated with Eq. 4 using f = f0l4

shows reasonable agreement with the numerical results, but
over a smaller range of concentrations than for the original
NG model. The discrepancy at low concentrations may occur
because the effective nucleation rate slowly varies with con-
centration, or may be due to error in the numerical integration
at large times. We note that the scaling predicted by Eq. 4
holds over the range of subunit concentrations that can be
studied experimentally. This observation shows that a slight
generalization of the NG model to include two association rate
constants can be made equivalent to this model. Because the
average elongation rate constant is faster than the nucleation
rate constant in this model, the crossover point cc moves to a
slightly higher concentration than for the NG model, but still
occurs roughly at the concentration for which τelong = τmin

nuc
(Eq. 5).

Association of oligomers. We also consider a version of
the NG model in which dimers associate(dissociate) to(from)
intermediates with the same rate constant as monomers. As
shown in Fig. 8b, the quantitative values for lag times and
median assembly times change under this condition, but the
scaling for both observables is unchanged. Although we did
not explicitly calculate cc or ckt for this model, we note that the
crossover behavior still begins at the concentration for which
initial nucleation rates are equal to the elongation time.

IV. THE SLOW APPROACH TO EQUILIBRIUM

The fraction of subunits in capsids PN(t) is shown as a
function of initial subunit concentration c0 at various times
in Fig. 9.

V. ESTIMATING THE MEDIAN ASSEMBLY TIME

In this section we derive an approximate expression for the
median assembly time τ1/2, or the time at which the reaction is
50% complete: PN(τ1/2) = 0.5P eq

N . We begin by considering
an irreversible reaction that proceeds according to nth order
nucleation kinetics

dc

dt
= −Nknucc

n (12)

with c the time-dependent concentration of free subunits and
knuc the nucleation rate constant. The factor N accounts for
the fact that N subunits are depleted for each capsid that
forms. Integrating Eq. 12 yields

c(t)
c0

=
[
(n− 1)Nknucc

n−1
0 t + 1

] −1
n−1 (13)

with c0 = c(0). The median assembly time for this irre-
versible reaction corresponds to c(τirrev) = 0.5c0 which gives

τirrev =
2n−1 − 1

(n− 1)Nknuc
c
−(n−1)
0 . (14)

To approximately account for the effect of back reactions on
the assembly time scale, we apply the standard formula for
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FIG. 9: Completion fractions at indicated times are shown as func-
tions of initial subunit concentration c0 for (a) the nucleation and
growth model and (b) the classical nucleation model. In (a) and (b),
the kinetic trap points ckt corresponds to the maximum in PN with
respect to c0 at t = 2000.
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FIG. 10: The maximum assembly rates calculated from the com-
pletion fraction (PN) and calculated light scatter (ILS) are shown as
functions of initial subunit concentration c0. The theoretical estimate
for the maximum nucleation rate (1/τmin

nuc calculated from Eq. 3 with
nnuc = 5) is shown as a dashed line.

two-state kinetics, which relates the overall reaction timescale
τ to the forward reaction rate k according to τ = P eq/k, with
P eq the fraction reacted at equilibrium. To arrive at Eq. 4 we
substitute P eq

N = P eq and 1/k = τirrev.

VI. MAXIMUM ASSEMBLY RATES

The maximum assembly rates are shown as a function of
the initial subunit concentration in Fig. 10.
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