Evolution, the First Programmer

Kyle Harrington DEMO Lab, Computer Science Brandeis University

Primate Programmers

- The Infinite Monkey Theorem:
 - In the limit of infinite time, monkeys can write Shakespeare.

Images: Wired Brooks, J. L., et al. (1989). The Simpsons. Twentieth Century Fox.

6 monkeys, a computer, and 1 month later 5 pages of mostly the letters S, A, J, L and M. (From U Plymouth, reported in Wired)

Micrographs to 3D structures

Rendering of experimentallyderived ribosome structure

Recap: Axel's Fancy Tools

(see references in Axel's slides)

BEADS Evolutionary Automated Discovery of Structures

Example: Structure Search

Local Optima Problem

of models evaluated

Evolutionary Algorithm

Evolution acts in parallel

Goodness of Fit

Proteins evolved in parallel

of models evaluated

Representation

• How does one represent a candidate model?

• Computational evolution uses bit strings

1 0 0 1 1 0 0 1 0 1 0

• What about representing this?

Our Representation

- Volumes of density as spheres
 - Variable number of spheres
 - Variable radius

Evolving Structural Models

Initialize Population

• Generate initial models (random or biased)

Evaluating a Candidate Model

- Computing fitness of a model
 - Simulate microscope imaging
 - Ray-trace from imaging plane

Particle Orientation

Coevolve orientation and structural model

(see Axel's slides)

Selection

Α

В

D

Ε

Mutation

• Mutation randomly perturbs candidate model

Populations of Models

• Individual models may favor different features

Fitness Landscapes

- Fitness landscape describes the distribution of phenotypes by fitness value
- Local optima
- Multiple peaks
- Deceptive optima

Example: Evolutionary Branching

Recombination Optimizes Mixability

 Selection acts on the mixes of individuals (children)

Concluding Particle Reconstruction

 Evolutionary particle reconstruction is a natural next step for the field

- Future directions:
 - Unifying existing algorithms with evolutionary algorithms
 - Recombination and environmental variation

Evolving Mathematical Models

• Goal: discover best model from experimental data with minimal human effort.

Evolving Mathematical Models

Target expression: $g(x) = X^2 + 2X + 1$

Mutating Expressions

Crossing Over Expressions

Predicting Epitope Binding

 Evolving mathematical models of molecular docking

Evolving Other Things[¬]

- Swarm ecosystems
- Animats
- Robots

Brevis

- http://brevis.golemics.org
- Open-source, interfaces with existing science software, and stable release coming-soon

Thank you

- Jordan Pollack
- James Chin
- Jessica Lowell
- Jeff Gelles and Jane Kondev
- QB program
- Audience