Life at Low D

Lecture I : Biological Filaments (1D)
Cytoskeleton

The "scaffolding" or "skeleton" contained within the cytoplasm

Cytoskeleton comprised of 3 types of protein filaments:

a) **Actin**
b) **Microtubules**
c) **Intermediate Filaments**

Endothelial cells. **Nuclei** are stained blue (DAPI), **microtubules** green (antibody bound to FITC), and **actin** filaments are red (phalloidin bound to TRITC). Bovine pulmonary arthery endothelial cells
A Drosophila tissue culture cell labeled for: **microtubules** in green and **DNA** in blue

Actin filaments of mouse embryo fibroblasts, stained with FITC-phalloidin
A Chinese hamster ovary cell (CHO) cell in anaphase. **Actin** (red), **tubulin** (green) and **DNA** (blue) are labeled.

A mitotic spindle with **kinetochores** (motors that bend microtubules, thereby destabilizing them and promoting depolymerization) in red and **microtubules** stained green.
Biological Filaments Actin

atomic structure of an actin filament with 13 subunits, based on the actin filament model of Ken Holmes; surface representation, rendered with PyMol

G-Actin
ADP and the divalent cation highlighted

ATP
ATP-Bound Actin

G-Actin

Thin filament organization

43kDa \sim 43nm3
Biological Filaments Microtubules

Figure 1. Polymerization of microtubules. Tubulin dimers assemble 'head-to-tail', forming oligomers that elongate into protofilaments. As the protofilaments reach an estimated critical length of 12 ± 2 dimers [65] they start to interact laterally, forming sheets with a characteristic intrinsic inward curvature. At a typical number of 13 protofilaments, the tubulin sheet closes into a tube, forming a microtubule. The tubulin lattice has a left-handed helical symmetry. The microtubule closes at the seam (black arrows), where there is a discontinuity point in the helical lattice.

Tubulin
Biological Filaments “from” Actin and Microtubules

Flagella

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/flagella1068.JPG
Biological Filaments Filamentous Bacteriophages (M13)

geneIII and geneVI proteins
infective tip

geneVIII protein ~50aa monomer, 2700 copies

geneVII and geneIX proteins
remote tip

ssDNA 7259bp = 2177nm

L ~ 1μm

EurBiophysJ 37. p.521(2008)
Biological Filaments

(A) Microtubule
(B) Bacterial flagellum
(C) Tobacco mosaic virus
(D) Collagen fiber

Phys. Biol. Of the Cell
Biological Filaments
What are the types of deformations encountered in a filament’s lifetime?

- **Stretch**
- **Bend**
- **Twist**
Stretching (Stress and Strain)
Stretching (Stress and Strain)

Stress
\[\sigma = \frac{F}{A_0} \]
Stretching (Stress and Strain)

\[\varepsilon = \frac{\Delta L}{L} \]

\[\sigma = \frac{F}{A_0} \]
Stretching (Stress and Strain)

Stress
\[\sigma = \frac{F}{A_0} \]

Strain
\[\varepsilon = \frac{\Delta L}{L} \]
Stretching (Stress and Strain)

\[\sigma = \frac{F}{A_0} \]
\[\varepsilon = \frac{\Delta L}{L} \]
\[\sigma = E \varepsilon \]
\[E = \frac{\text{Force}}{\text{Area}} = \frac{\text{Energy}}{\text{Volume}} \]
Peruvian Example Rubber Band

\[A_0 = 0.1 \text{cm}^2 \]

\[1 \text{lbs} \approx 0.5 \text{kg} \]

\[F \sim (2.5 \text{kg})(9.8 \text{ m/s}^2) \approx 25 \text{N} \]

\[\sigma = \frac{F}{A_0} \approx 250 \frac{\text{N}}{\text{cm}^2} \]

\[\varepsilon = \frac{\Delta L}{L} \approx 0.75 \]

\[\sigma = E\varepsilon \]

\[E \approx 300 \frac{\text{N}}{\text{cm}^2} = 0.003 \text{ GPa} \]
Young’s Modulus

\[
\begin{align*}
\text{Stress} & \quad \sigma = \frac{F}{A_0} \\
\text{Strain} & \quad \varepsilon = \frac{\Delta L}{L}
\end{align*}
\]

\[
\sigma = E \varepsilon
\]

E = Young’s Modulus
UNITS!!!

\[
E = \left[\frac{\text{Force}}{\text{Area}} \right] = \left[\frac{\text{Energy}}{\text{Volume}} \right]
\]

Estimates

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>E [GPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>1200</td>
</tr>
<tr>
<td>Steel</td>
<td>211</td>
</tr>
<tr>
<td>Glass</td>
<td>100</td>
</tr>
<tr>
<td>Wood</td>
<td>10</td>
</tr>
<tr>
<td>Plastic</td>
<td>2.4</td>
</tr>
<tr>
<td>Rubber</td>
<td>0.02</td>
</tr>
</tbody>
</table>

1 Pa = 1 N/m² = 1 J/m³

Metals

\[
\begin{align*}
154 \text{ pm} & \\
U_{\text{int}} & \sim eV \quad \Rightarrow \quad E \approx 200 \text{ GPa}
\end{align*}
\]

G-Actin

\[
\begin{align*}
V & \sim 43 \text{nm}^3 \\
U_{\text{int}} & \sim 10k_B T \quad \Rightarrow \quad E \approx 2 \text{ GPa}
\end{align*}
\]
Spring Analogy

\[F = kx \]

\[U = \frac{1}{2} kx^2 \]
Spring Analogy

\[F = k(\delta a) \]

\[U = \frac{1}{2} k(\delta a)^2 \]
Spring Analogy

\[F = E \frac{\Delta L}{L} \]

\[F = \frac{EA}{L} (\Delta L) \]

\[U = \frac{1}{2} \frac{EA}{L} (\Delta L)^2 \]

\[F = k(\delta a) \]

\[U = \frac{1}{2} k(\delta a)^2 \]
Strain Energy

\[\frac{F}{A} = E \frac{\Delta L}{L} \]

\[U_{\text{Strain}} = \frac{1}{2} \frac{EA}{L} (\Delta L)^2 \]
Strain Energy

\[
\frac{F}{A} = E \frac{\Delta L}{L}
\]

\[
U_{\text{Strain}} = \frac{1}{2} \frac{EA}{L} (\Delta L)^2
\]

\[
U_{\text{Strain}} = \frac{1}{2} E \left(\frac{\Delta L}{L_0} \right)^2 AL_0 = \frac{1}{2} E \varepsilon^2 V
\]
Strain Energy

\[\frac{F}{A} = E \frac{\Delta L}{L} \]

\[U_{\text{Strain}} = \frac{1}{2} \frac{EA}{L} (\Delta L)^2 \]

\[U_{\text{Strain}} = \frac{1}{2} E \left(\frac{\Delta L}{L_0} \right)^2 A L_0 = \frac{1}{2} E \varepsilon^2 V \]

\[\frac{U_{\text{Strain}}}{\text{Volume}} = \frac{1}{2} E \varepsilon^2 \]

\[U_{\text{Strain}} = \frac{E}{2} \int \varepsilon^2(x, y, z) dx dy dz \]
Bending

L_0

α_0

L_0
Bending

\[x = R \theta \]

\[L = L(z) \]
\[L(0) = L_0 \]

\[\Delta L(z) = L(z) - L_0 = (R + z) \frac{L_0}{R} - L_0 = \frac{z L_0}{R} \]

\[\varepsilon = \frac{\Delta L(z)}{L_0} = \frac{z}{R} \]
\begin{align*}
L &= L(z) \\
L(0) &= L_0 \\
\Delta L(z) &= L(z) - L_0 = (R + z) \frac{L_0}{R} - L_0 = \frac{zL_0}{R} \\
\varepsilon &= \frac{\Delta L(z)}{L_0} = \frac{z}{R} \\
U_{\text{Strain}} &= \frac{E}{2} \int \varepsilon^2 (x, y, z) dxdydz
\end{align*}
Bending

\[x = R \theta \]

\[\varepsilon = \frac{\Delta L(z)}{L_0} = \frac{z}{R} \]

\[U_{\text{Strain}} = \frac{E}{2} \int \varepsilon^2 (x, y, z) dx dy dz \]

\[U_{\text{Bend}} = \frac{E}{2} \int_0^L dx \int_{-h/2}^{h/2} dy \int_{-h/2}^{h/2} \left(\frac{z}{R} \right)^2 dz = \frac{E}{2} \frac{1}{R^2} L \cdot h \cdot \frac{h^3}{8 \cdot 3} \cdot 2 = \frac{E}{2} \left(\frac{h^4}{12} \right) \frac{L}{R^2} \]
Bend Energy

\[U_{Bend} = \frac{E}{2} \left(\frac{h^4}{12} \right) \frac{L}{R^2} \]
Bend Energy

\[U_{\text{Bend}} = \frac{E}{2} \left(\frac{h^4}{12} \right) \frac{L}{R^2} \]

\[U_{\text{Bend}} = \frac{E}{2} \left(\frac{\pi r^4}{4} \right) \frac{L}{R^2} \]
Bend Energy

\[U_{\text{Bend}} = \frac{E}{2} \left(\frac{h^4}{12} \right) \frac{L}{R^2} \]

\[U_{\text{Bend}} = \frac{E}{2} \left(\frac{\pi r^4}{4} \right) \frac{L}{R^2} \]

Areal Moment of Inertia

\[I = \frac{wh^3}{12} \]

\[I = \frac{\pi r^4}{4} \]

\[I = \frac{\pi (r^4 - r_0^4)}{4} \]
Bend Energy

\[U_{\text{Bend}} = \frac{EI}{2} \frac{L}{R^2} \]

Areal Moment of Inertia

\[I = \frac{wh^3}{12} \]

\[I = \frac{\pi r^4}{4} \]

\[I = \frac{\pi (r^4 - r_0^4)}{4} \]
Bend Energy

\[U_{Bend} = \frac{EI}{2} \frac{L}{R^2} \]

Areal Moment of Inertia

\[I = \frac{wh^3}{12} \]

\[I = \frac{\pi r^4}{4} \]

\[I = \frac{\pi (r^4 - r_0^4)}{4} \]
Bend Energy

\[U_{Bend} = \frac{EI}{2} \frac{L}{R^2} \]

Energy required to bend filament into circular arc of length, \(L \), and radius, \(R \)

\[U_{Loop} = \frac{YI(2\pi R)}{2R^2} = \frac{\pi EI}{R} \]
Bend Energy

\[U_{\text{Bend}} = \frac{EI}{2} \frac{L}{R^2} \]

Energy required to bend filament into circular arc of Radius, \(R \), and Length \(L=R \)

\[U_{\text{Rad}} = \frac{YI(R)}{2R^2} = \frac{EI}{2R} = \frac{EI}{2L} \]
Bend Energy

\[U_{\text{Bend}} = \frac{EI}{2} \frac{L}{R^2} \]

Energy required to bend filament into circular arc of Radius, \(R \), and Length \(L = R \)

\[U_{\text{Rad}} = \frac{YI(R)}{2R^2} = \frac{EI}{2R} = \frac{EI}{2L} \]

\[\frac{1}{2} k_B T = \frac{EI}{2\xi} \]

\[\xi = \frac{EI}{k_B T} \]
Persistence Length

\[\xi = \frac{EI}{k_B T} \]

Correlation of Tangent Angles

Oooooh what fun…!

Just wait until Lecture II
Persistence Length DNA

\[\xi = \frac{EI}{k_B T} \]
Persistence Length DNA

\[\xi = \frac{EI}{k_B T} \]

\[\xi \approx 340 \text{nm} \]
Persistence Length DNA

\[\xi = \frac{EI}{k_B T} \]

![Graph showing force vs. extension for DNA with labels: Inextensible wormlike chain, Stretching, Relaxing, Melting hysteresis, Elastic modulus of B-form DNA.]

\[\sigma = E \varepsilon \]

\[\sigma = \frac{F}{A_0} = \frac{F}{\pi r^2} \quad \varepsilon = \frac{\Delta L}{L_0} = \frac{L - L_0}{L_0} \]

\[r = 10 \text{ Å} \]

\[L_0 = 48,500 \text{bp} = 16.4 \mu \text{m} \]

\[E = \frac{F}{\pi r^2 \frac{L_0}{L - L_0}} = 0.34 \text{GPa} \]
Persistence Length DNA

\[\xi = \frac{EI}{k_B T} \]

\[I = \frac{\pi R^4}{4} \approx 0.78 \text{nm}^4 \]

\[E \approx 0.34 \text{GPa} \]

\[\xi \approx 66 \text{nm} \]
Persistence Length Actin

\[\xi = \frac{EI}{k_B T} \]
Persistence Length Actin

\[\xi = \frac{EI}{k_B T} \]

\[I = \frac{\pi R^4}{4} \approx 0.78 \text{nm}^4 \quad E \approx 1.6 \text{GPa} \]

\[\xi \approx 47 \mu m \]
Persistence Length Microtubules

\[\xi = \frac{EI}{k_B T} \]
Persistence Length Microtubules

\[\xi = \frac{EI}{k_BT} \]

\[R \approx 12.5nm \]
\[R_0 \approx 10nm \]

\[I = \frac{\pi (R^4 - R_0^4)}{4} \approx 0.78nm^4 \]
\[E \approx 1.6GPa \]

\[\xi \approx 4.5mm \]
Persistence Length A length dependence?

\[U_{\text{Strain}} = \frac{E}{2} \int \varepsilon^2 \, dx \, dy \, dz \]

Fig. 3. The persistence length of MTs as a function of their contour lengths. The contour length ranges from 2.6 to 47.5 \(\mu \text{m} \). The fit with Eq. 4 is superimposed on the experimental points.

PNAS (2006) 103 10248–10253
Stretching Experiments M13 virus

Stretching Experiments Actin

Tsuda *et al.* *PNAS* **93** *(1996)*
Life at Low D

END Lecture I

Thank you.
Life at Low D

Lecture II: Vitrual Lab
Bend Energy

\[U_{\text{Bend}} = \frac{EI}{2} \frac{L}{R^2} \]

Energy required to bend filament of Length \(L \) into circular arc of Radius, \(R \)
Bend Energy

\[U_{\text{Bend}} = \frac{EI}{2} \frac{L}{R^2} \]

Energy required to bend filament of Length \(L \) into circular arc of Radius, \(R \)

\[U_{\text{Bend}} = \sum_{\text{all arcs}} U_{\text{Bend}}^o = \frac{EIL}{2} \int_0^L \frac{1}{R^2(s)} \, ds \]
Bend Energy

\[U_{\text{Bend}} = \frac{EIL}{2} \int_{0}^{L} \frac{1}{R^2(s)} ds \]

\[ds = Rd\theta \quad \Rightarrow \quad \frac{1}{R} = \frac{d\theta}{ds} \]

\[U_{\text{Bend}} = \frac{EIL}{2} \int_{0}^{L} \left(\frac{d\theta}{ds} \right)^2 ds \]
Bend Energy

\[U_{\text{Bend}} = \frac{EIL}{2} \int_{0}^{L} \left(\frac{d\theta}{ds} \right)^2 ds \]
“Molecular” Model - Estimates from Molecular Interactions

\[F = k_s (\delta a) \]

\[\varepsilon = \frac{\delta a}{a_0} \quad \sigma = \frac{F}{a_0^2} = \frac{k_s \delta a}{a_0^2} \quad \Rightarrow \quad \sigma = \frac{k_s}{a_0} \varepsilon \]

<table>
<thead>
<tr>
<th>“Monomer”</th>
<th>(\kappa) (N/m)</th>
<th>(a) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-Actin</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

\[k_s^{\text{actin}} = 2 \, \frac{N}{m} \quad a_0^{\text{actin}} = 1 \, \text{Å}^0 \]
Bending Deformations (as collection of stretched beams)

\[E_{Bend}^i = \frac{YIL}{2R_i^2} \]

\[E_{Bend}^j = \frac{YIL}{2R_j^2} \]

\[E_{Bend} = \sum_n \frac{YIL}{2R_n^2} \]

\[E_{Bend} = \frac{YIL}{2} \int_0^L \frac{1}{R^2(s)} ds \]
Bending Moment
Flexural Rigidity

$E_{Bend} = \frac{YIL}{2R^2} = \frac{BL}{2R^2}$

Fix one end
Displace rod by amount x

$x = \frac{L^2}{2R}$

Harmonic Oscillator

$E = \frac{2Bx^2}{L^3}$

$E = \frac{k}{2} x^2$

where $k = \frac{4B}{L^3}$

$\langle x^2 \rangle = \frac{k_B T}{k} = \frac{L^3 k_B T}{4B}$

Compare “deflections” for the filament models
Energies and Lengthscales

\[1k_B T \approx 4 \times 10^{-21} J \quad 1J = 1N \cdot m \]

Gigajoule - 1 billion joules.

Six gigajoules is about the amount of chemical energy in a barrel of oil.

Terajoule - 1 trillion joules.

About 60 terajoules were released by the bomb that exploded over Hiroshima.

\[1k_B T = 4 \ pN \cdot nm \]
“Molecular” Model

\[F = k_s(\delta a) \]

\[\varepsilon = \frac{\delta a}{a_0} \quad \sigma = \frac{F}{a_0^2} \]

\[\sigma = \frac{k_s}{a_0} \varepsilon \]

\[E = \frac{k_s}{a_0} \]

\[k_s^{actin} = 2^N/m \quad a_0^{actin} = 1^{\circ} \AA \]

http://www.uic.edu/classes/phys/phys450/MARKO/N014.html