Plasticity on two different scales: on what scale is information processed?

David Biron

Thermotactic behavior depends on the previous cultivation temperature (Ts) and on the ambient temperature (T) (Hedgecock and Russell, 1975) (Mori and Ohshima, 1995)

Different levels of description of Thermotactic memory

- Behavior of the entire organism (1000 μ m)
- Information processing in neural circuits (10 μm)
- Underlying molecular machinery protein interactions (<0.01 μ m)

C. elegans nomenclature

DAG is found in the plasma membrane

DAG is found in the plasma membrane

A closer look at the plasma membrane

A closer look at the plasma membrane

DAG and IP₃ are *messengers* in the process of converting an extra-cellular signal to an electrical response (*sensory signal transduction*)

dgk-3 down-regulates DAG levels

Entire organism level: Measuring the position of isothermal tracks defines the thermotactic set-point, T_s

The thermotactic set-point (T_s) of adult worms changes with continued cultivation at a new temperature

The thermotactic set-point (T_s) of adult worms changes with continued cultivation at a new temperature

A diacylglycerol kinase (*dgk-3*) is strongly expressed in the AFD neurons

Thermotactic navigational behavior

A diacylglycerol kinase (*dgk-3*) is strongly expressed in the AFD neurons

1 kb

AWB

 \geq

AWC

A diacylglycerol kinase (*dgk-3*) is strongly expressed in the AFD neurons

So *dgk-3* is in the right neuron and has known ties to sensory signal transduction..

Knocking out dgk-3 disrupts only the worm's ability to reset T_s to new warmer temperatures

Reference: WT
dgk-3(gk110) τ_{dn} = 1.1 ± 0.2 h

A gain of function mutation of the *dgk-3* gene disrupts the worm's ability to reset T_s to new <u>colder</u> temperatures

AFD-specific expression of *dgk-3* rescues the upshift T_s defect

In a cycling cultivation temperature *dgk-3* mutants reset T_s to a lower value than wild-type because T_s depends on τ_{up}/τ_{dn}

WT:
$$\tau_{up} / \tau_{dn} = 1.6 / 1.8$$

dgk-3: $\tau_{up}/\tau_{dn} = 5.8/1.1$

