Plasticity on two different scales: on what scale is information processed?

David Biron
C. elegans neurons

Nerve ring – interneurons

(Amphid) Sensory neurons

Motoneurons
Thermotactic behavior depends on the previous cultivation temperature (T_s) and on the ambient temperature (T) (Hedgecock and Russell, 1975) (Mori and Ohshima, 1995).

- $T = T_s$: Isothermal Tracking
Different levels of description of Thermotactic memory

- Behavior of the entire organism (1000 µm)
- Information processing in neural circuits (10 µm)
- Underlying molecular machinery – protein interactions (<0.01 µm)
C. elegans nomenclature

- **AFD**: Sensory neuron
- **AIY**: Inter-neuron

WT dgk-3: Enzyme (reduces DAG levels)

dgk-3 (lof): A non-active dgk-3

dgk-3 gof: A hyper-active dgk-3
DAG is found in the plasma membrane
DAG is found in the plasma membrane
A closer look at the plasma membrane
A closer look at the plasma membrane
DAG and IP$_3$ are *messengers* in the process of converting an extra-cellular signal to an electrical response *(sensory signal transduction)*
dgk-3 down-regulates DAG levels
Entire organism level:
Measuring the position of isothermal tracks defines the thermodtactic set-point, T_s
The thermotactic set-point (T_s) of adult worms changes with continued cultivation at a new temperature.
The thermotactic set-point (T_s) of adult worms changes with continued cultivation at a new temperature.
A diacylglycerol kinase (*dgk-3*) is strongly expressed in the AFD neurons

(Mori and Ohshima, 1995)

Diagram:

- **AFD**
- **AIY**
- **RIA**
- **AIZ**

Interneurons and motoneurons

Thermotactic navigational behavior
A diacylglycerol kinase ($dgk-3$) is strongly expressed in the AFD neurons

Interneurons and motoneurons

Thermotactic navigational behavior

(Mori and Ohshima, 1995)

(Colosimo et al., 2004)
A diacylglycerol kinase (*dgk-3*) is strongly expressed in the AFD neurons

(Mori and Ohshima, 1995)

Interneurons and motoneurons

Thermotactic navigational behavior

(Colosimo et al., 2004)

<table>
<thead>
<tr>
<th></th>
<th>$T > T_S$</th>
<th>$T = T_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-Type</td>
<td>Cryophilic</td>
<td>Track</td>
</tr>
<tr>
<td>dgk-3</td>
<td>Cryophilic</td>
<td>Track</td>
</tr>
</tbody>
</table>
So *dgk-3* is in the right neuron and has known ties to sensory signal transduction.

Diagram:

- AFD
- AIY
- RIA
- AIZ

Interneurons and motoneurons

Thermotactic navigational behavior

Legend:

- Wild-Type
- *dgk-3*

<table>
<thead>
<tr>
<th>T > T_S</th>
<th>T = T_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryophilic</td>
<td>Track</td>
</tr>
<tr>
<td>Cryophilic</td>
<td>Track</td>
</tr>
</tbody>
</table>

(Mori and Ohshima, 1995)

(Colosimo et al., 2004)
Knocking out \textit{dgk-3} disrupts only the worm’s ability to reset T_S to new warmer temperatures.

- Reference: WT
 \[\tau_{up} = 5.8 \pm 1.0 \text{ h}^{**} \]

- Reference: WT
 \[\tau_{dn} = 1.1 \pm 0.2 \text{ h} \]
A gain of function mutation of the *dgk-3* gene disrupts the worm’s ability to reset T_S to new colder temperatures.
AFD-specific expression of *dgk-3* rescues the upshift T_s defect
In a cycling cultivation temperature \(dgk-3\) mutants reset \(T_S\) to a lower value than wild-type because \(T_S\) depends on \(\tau_{up}/\tau_{dn}\)

\[
\text{WT: } \tau_{up}/\tau_{dn} = 1.6/1.8
\]

\[
dgk-3: \tau_{up}/\tau_{dn} = 5.8/1.1
\]