

# PROTEIN JURASSIC PARK

### **Jeffrey Boucher**

\*Less than 10% Dinosaur content

## Talk Outline

• Talk 1:

 – "How to Raise the Dead: The Nuts & Bolts of Ancestral Sequence Reconstruction"

• Talk 2:

Ancestral Sequence Reconstruction Lab

- Talk 3:
  - "Ancestral Sequence Reconstruction: What is it Good for?"

How to Raise the Dead: The Nuts and Bolts of Ancestral Sequence Reconstruction

> Jeffrey Boucher Theobald Laboratory

## Orientation for the Talk

• The Central Dogma:



## Orientation for the Talk (cont.)

• Chemistry of side chains govern structure/function



Mutations to sequences occur over time





## We Live in The Sequencing Era

#### **GenBank Database Growth by Year**



Since inception, database size has doubled every 18 months.

http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html

## What Can We Learn From This Data?

• Individually...not much

>gi|93209601|gb|ABF00156.1| pancreatic ribonuclease precursor subtype Na [Nasalis larvatus] MALDKSVILLPLLVVVLLVLGWAQPSLGRESRAEKFQRQHMDSGSSPSSSSTYCNQMMK RRNMTQGRCKPVNTFVHEPLVDVQNVCFQEKVTCKNGQTNCFKSNSRMHITDCRLTNG SKYPNCAYRTTPKERHIIVACEGSPYVPVHFDASVEDST

- Too many sequences to characterize individually
  - Today:

1.5 E 8 sequences ÷ 7 E 9 people = 1 sequence/50 people

- By 2019

1.2  $\varepsilon$  9 sequences ÷ 7.5  $\varepsilon$  9 people = 1 sequence/6 people

# Bioinformatics!

Bioinformatic methods developed to deal with this backlog

- Methods covered:
  - Sequence Alignment (& BLAST)
  - Phylogenetics
  - Sequence Reconstruction

Sequence Alignment

• How can we compare sequences?

## Not All Mismatches Are Created Equal



• How can scoring function account for this?

## **Substitution Matrix**



## Calculating A Substitution Matrix

• How are the rewards/penalties determined?

• Determined by log-odds scores:

$$S_{i,j} = \log \frac{p_{i,j}}{q_i * q_j} \longleftarrow Why not just p_{i,j}?$$

p<sub>i,i</sub> is probability amino acid i transforms to amino acid j

q<sub>i</sub> & q<sub>i</sub> represent the frequencies of those amino acids

## Neither Are All Matches



#### BLOSUM62 (BLOcks of Amino Acid SUbstitution Matrix)



## **BLOSUM62** Matrix Calculation



 $p_{G,A} = 14/900 = 0.016$   $S_{i,j} = \log \frac{p_{i,j}}{q_i * q_j} \qquad q_G = 7 + 9 = 16/225 = 0.071$  $q_A = 2 + 9 + 9 = 21/225 = 0.093$  Pairwise Alignment Examples

• No Gaps allowed:



• Gap Penalty of -8:



- Penalty heuristically determined

## Pairwise Alignment Examples (cont.)

• If gap penalty is too low...

## Orangutan VDEV-GGELGRLF-VV-PTQ-Chimpanzee V-EVA-GDLGRL-LIVYPS-R

• Alignment of multiple sequences similar method

# (& BLAST)

- Alignment can identify similar sequences
- BLAST (Basic Local Alignment Search Tool)



- How does alignment compare to alignment of random sequences?
  - E-value of 1<sub>E</sub>-3 is a 1:1000 chance of alignment of random sequences

## Homology vs. Identity

Significant BLAST hits inform us about evolutionary relationships

- Homologous share a common ancestor
  This is binary, not a percentile
  - Identity is calculated, homology is a hypothesis
  - Homology does not ensure common function

Visual Depiction of Alignment Scores

• Suppose alignment of 3 sequences...

Orangutan Chimpanzee Mouse



M



## Phylogenetics

• Relationships between organisms/sequences

• On the Origin of Species (1859) had 1 figure:



## Phylogenetics

• Prior to 1950s phylogenies based on morphology



- Sequence data/Analytical methods

# Phylogeny



## A Tale of Two Proteins

Significant sequence similarity & the same structure





"Gene"alogy



## Back to the Future

- Resurrecting extinct proteins 1<sup>st</sup> proposed Pauling & Zuckerkandl in 1963
- In 1990, 1<sup>st</sup> Ancestral protein reconstructed, expressed & assayed by S.A. Benner Group
  - RNaseA from ~5Myr old extinct ruminant



# What Took So Long ?

## How to Resurrect a Protein

1) Acquire/Align Sequences

| KELG-DIVLVDIPQLENPTKGKALDMLESSPVLGFDANIVG-TSDY. |
|-------------------------------------------------|
| KDFA-DVVMLDVVEGIPQGKALDISQSANVLGFSHTITG-SNDY.   |
| KDFA-DVVMLDVVEGIPQGKALDISQSASVLGFRHAITG-SNDY    |
| KDFA-DVVMLDVVEGIPQGKALDISQSASVLGFRHTITG-SNDY    |
| GNVA-DVVLLDIVEGRPQGITLDLLEACGVEGHTCRITG-TNDY.   |
| KNLA-DVVLLDIVEGIPQGLALDLLEARGIELHNRQIIG-TNNY    |
| KNLA-DVVLLDIVEGMPQGLALDLLEARGIELHNRQIIG-TNNY.   |
| QNVA-NVVLLDIVPGLPQGIALDLMAAQSVEEYDSKIIG-TNEY    |
| AELG-DVVLLDIPRTEDMPRGKALDLMQASPIMGFDSNIVG-TTDY. |
| LELG-EIVMTDIVEGLPQGKALDLIQAGAIKGYDTSIIG-TNDY.   |
| LEPG-EIVMTDIVEGLPQGKALDLMQAGAINGYDTQVTG-TNDY.   |
| LEPG-EIVMTDIVEGMPQGKALDLMQAGAINGYDTRITG-TNDY.   |
| KELG-DIVLLDFVEGVPQGKALDLYEASPIEGFDVRVTG-TNNY.   |
| KELG-DIVLIDVAEGIPQGKALDLMEAAPVEGYDSVIIG-TNDY.   |
| REIVNEVILLDIKEGVAEGKALDIWQKAPITQYDTKTTGVTNDY    |



2) Construct Phylogeny (from Chang et al. 2002)

- 3) Infer Ancestral Nodes
- 4) Synthesize Inferred Sequence

## So Really...What Took So Long?

• Advances in 3 areas were required:

- Sequence availability
- Phylogenetic reconstruction methods
- Improvements in DNA synthesis

## Sequence Availability

**GenBank Database Growth by Year** 



http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html

• Advances in 3 areas were required:

# ✓ Sequence availability

- Phylogenetic reconstruction methods
- Improvements in DNA synthesis

## Advances in Reconstruction Methods



Maximum Likelihood

## Consensus

GIVDTSRYCS GIVDTSRYCS GIIDTSRYCS GVLETSRYCS GVIETSRYCS

## **GI**XDTS**R**YCS



- Advantage: Easy & fast
- Disadvantages: Ignores phylogenetic

## Parsimony

- Parsimony Principle
  - Best-supported evolutionary inference requires fewest changes
  - Assumes conservation as model

- Advantage:
  - Takes phylogenetic relationships into account

- Disadvantage:
  - Ignores evolutionary process & branch lengths

## Parsimony



## Parsimony



Example adapted from David Hillis

## Parsimony - Alternate Reconstructions





• Is conservation the best model?



## Maximum Likelihood

• Likelihood:

#### Likelihood = Probability(Data|Model)

- How surprised we should be by the data
- Maximizing the likelihood, minimize your surprise
- Example:

- Roll 20-sided die 9 times:



## Maximum Likelihood

Likelihood = Probablity(Data | Model)

• Fair Die Model:

– 5% chance of rolling a 20

Likelihood =  $(0.05)^9 = 2E-11$ 

Assuming trick model maximizes the likelihood

## From Dice to Trees

- Likelihood=
  - Data Sequences/Alignment
  - Model Tree topology, Branch lengths & Model of evolution



Choose model that maximizes the likelihood

## Improvements Over Parsimony

- Includes of evolutionary process & branch lengths
  - Reduction in ambiguous sites
- Fit of model included in calculation
  - Removes *a priori* choices
  - Use more complex models (when applicable)
- Confidence in reconstruction
  - Posterior probabilities

• Advances in 3 areas were required:

# ✓ Sequence availability

# Phylogenetic reconstruction methods

#### - Improvements in DNA synthesis

## Advances in DNA Synthesis



## How to Synthesize a Gene



Schematic adapted from Fuhrmann et al 2002

## On to the Easy Part...

