Publications

  • T. G. Fai, L. Mohapatra, P. Kar, J. Kondev, and A. Amir, Length regulation of multiple flagella that self-assemble from a shared pool of components. eLife, 8, e42599, 2019 (accepted version).
  • T. Ruiz-Herrero, T. G. Fai, and L. Mahadevan, Dynamics of growth and form in prebiotic vesicles. Phys. Rev. Lett., 123, 038102, 2019 (linkarxiv).

  • Featured in Nature Reviews Physics. (linkhighlight)

  • T. G. Fai and C. Rycroft, Lubricated Immersed Boundary Method in Two Dimensions. J. Comput. Phys., 356, 319-339, 2018 (linkarxiv).

  • Movies comparing the standard and lubricated immersed boundary methods:

    Channel flow, standard IB method (colors represent pressure)

    Channel flow, lubricated IB method

    Wall-induced migration, standard IB method (dotted line is 2 gridpoints from wall)

    Wall-induced migration, lubricated IB method

  • S. Cannon, T. G. Fai, J. Iwerks, U. Leopold and C. Schmidt, Edge and point 2-transmitter art gallery problems. Comput. Geom., 68, 89-100, 2018 (linkarxiv).
  • T. G. Fai, R. Kusters, J. Harting, C. Rycroft, and L. Mahadevan, Active elastohydrodynamics of vesicles in narrow, blind constrictions. Phys. Rev. Fluids, 2, 113601, 2017 (linkarxiv)
  • T.G. Fai, A. Leo-Macias, D.L. Stokes and C.S. Peskin, An image-based model of the spectrin cytoskeleton for red blood cell simulation. PLOS Comput. Biol., 11(6), e1005790, 2017 (linkpreprint). 

  • Movie of cytoskeleton dynamics

    Image processing of tomogram

    Simulated extension by optical tweezers

  • C. H. Wu, T. G. Fai, P. J. Atzberger, and C. S. Peskin. Simulation of osmotic swelling by the stochastic immersed boundary method. SIAM J. Sci. Comput. , 37(4), B660-B688, 2015 (linkpreprint).
  • S. Shekhar, L. Zhu, L. Mazutis, A. E. Sgro, T. G. Fai, M. Podolski. Quantitative biology: where modern biology meets physical sciences. Mol. Biol. Cell, 25(22), 3482-3485, 2014 (link).
  • A. Donev, A.J. Nonaka, Y. Sun, T.G. Fai, A.L. Garcia, and J.B. Bell. Low Mach number fluctuating hydrodynamics of diffusively mixing fluids. Comm. App. Math. and Comp. Sci., 9(1), 47-105, 2014. 
  • T.G. Fai, B.E. Griffith, Y. Mori, and C.S. Peskin. Immersed Boundary Method for Variable Viscosity and Variable Density Problems using Fast Constant-Coefficient Linear Solvers II: Theory. SIAM J. Sci. Comput., 36:3, B589-B621, 2014 (linkpreprint).

  • Movies from internal gravity waves in a stratified fluid:

  • Traveling wave packet, mass density perturbation (left) and energy density (right)

    Cross-shaped density (left) and energy (right) resulting from localized disturbance at origin with a fixed frequency 

    Traveling wave packet in the nonlinear regime with variable viscosity 

  • A. Donev, T.G. Fai, E. Vanden-Eijnden. A reversible mesoscopic model of diffusion in liquids: From giant fluctuations to Fick’s law. J. Stat. Mech., P04004, 2014. 
  • T.G. Fai, B.E. Griffith, Y. Mori, and C.S. Peskin. Immersed Boundary Method for Variable Viscosity and Variable Density Problems using Fast Constant-Coefficient Linear Solvers I: Numerical Method and Results. SIAM J. Sci. Comput., 35:5, B1132-B1161, 2013 (linkpreprint).

  • Movies from red blood cell simulations:

    Flow through capillary, center of mass frame with fluid tracers

    Tank treading, side view

    Tank treading, top view

    Tumbling, side view

    Tumbling, top view

  • F. Balboa Usabiaga, J.B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B.E. Griffith, and C.S. Peskin. Staggered schemes for fluctuating hydrodynamics. Multiscale Model. Sim., 10(4), 1369-1408, 2012.