Information Propagation through cell tissues as a model for active nematic liquid crystals

Annemarie Winters and Guillaume Duclos*

Department of Physics, Brandeis University, Waltham, MA

Nematic Liquid Crystals

Conventional liquid crystals (LC) are birefringent, meaning that electromagnetic waves propagate at different speeds along or perpendicular to the director of the LC.

Calcium Signaling

External stimuli, such as a flow of ATP or a mechanical stress causes epithelial cells to release calcium ions.

Through fluorescently labeling calcium ions, the movement of ion flow can be tracked through the system, resulting in a quantitative method to analyze information propagation among dense monolayers of tissue.

Biological Networks

Once small-scale networks are understood, we can move toward studying bulk orientations, building our way up to topological defects such as those found in active nematic liquid crystals.

Starting Simple

We’ll start by slowly increasing network complexity to understand how information is communicated among complex networks. We can build our way up to nematic orientations/defects.

References


Acknowledgments

I want to thank the Duclos Lab for being incredibly supportive 😊.

I hypothesize that molecular signals will also propagate anisotropically through dense tissues composed of elongated cells, due to the excess gap junctions along the cell long axis. Consequently, I hypothesize that the architecture of the cellular network will also impact how cells sense and propagate signals.