Sections
Rabb School of Continuing Studies, Division of Graduate Professional Studies
In 1992, the Rabb School of Continuing Studies was named in honor of Norman S. and Eleanor E. Rabb in recognition of more than four decades of support for Brandeis.
With four divisions — Graduate Professional Studies, the Summer School, the Osher Lifelong Learning Institute at Brandeis, and Brandeis High School Programs — the Rabb School seeks to serve lifelong learners by supporting the university in its mission of providing open inquiry and outstanding teaching in a world of challenging social and technological transformation.
In 1997, the Division of Continuing Studies, now the Division of Graduate Professional Studies, was established in the Rabb School specifically to extend the opportunity for excellent, applied professional education at the graduate level to a more diverse, part-time, working-adult population. All degree programs in the division are professionally oriented, applied in nature (combining requisite theory with the practical application of learned material), and taught by expert adjunct faculty who are practitioners of their subject matter in their professional lives.
Master’s degrees in eight applied, professional fields are offered in the Division of Graduate Professional Studies of the Rabb School and are overseen by the Rabb School Council, made up of faculty representing the other schools in the university and chaired by a full-time faculty member.
New degrees, as well as substantive changes to the curriculum, are reviewed for approval by the Rabb School Council and as necessary by both the Council of the Graduate Professional Schools and the Academic Affairs Committee of the Board of Trustees.
The Division of Graduate Professional Studies in the Rabb School currently offers eight master's degree programs, requiring 10 to 12 three- or four-credit courses, in applied fields:
- Master of Software Engineering (est. 1997)
- Master of Science in Bioinformatics (est. 2002)
- Master of Science in Project and Programs Management (est. 2003)
- Master of Science in Information Technology Management (est. 2005)
- Master of Science in Information Security (est. 2008)
- Master of Science in Health and Medical Informatics (est. 2010)
- Master of Science in Strategic Analytics (est. 2013)
- Master of Science in Online Instructional Design and Technology (est. 2014)
The division offers an opportunity for students to earn two degrees, sequentially, transferring up to three courses, if appropriate, from the first program to the second.
Programs in the Division of Graduate Professional Studies were traditionally offered on campus part-time in the evening, in three 10-week terms, year-round. Given the Rabb School’s commitment to making graduate, credit-bearing and professionally oriented academic resources at Brandeis available to as many qualified part-time students as possible, the division gradually expanded into online learning, receiving the New England Association for Schools and Colleges’ approval for its first online credential (graduate certificate in software engineering) in 2004. Gradually, on-campus courses were phased out and now all eight degrees are offered completely online.
In addition, the Division collaborates with corporate partners in offering credit-bearing courses to special student groups at corporate sites or welcoming corporate-sponsored students in online courses. There are no degree programs offered through sites other than the Brandeis campus.
How to Apply
Admission policies and procedures for graduate degree programs in the Division of Graduate Professional Studies are described in detail in both the Division Web site and the Student Handbook located on the Web site. Standards of admission to all programs are clear, consistent and simple. Applicants to graduate programs in the Rabb School generally hold bachelor’s degrees from regionally accredited U.S. institutions or their equivalent.
All formal applications for admission are evaluated by a faculty/staff committee. Applications and admission decisions are made on a rolling basis, with entry points at the beginning of each of the three standard 10-week terms (September, January and May).
Academic Standing
Prior to filing a formal application, students may take up to two graduate courses, thereby determining whether commitment to both the chosen field and a master’s degree program is appropriate for them. It is standing policy that a course graded below B – may not be applied toward a degree, regardless of when it is taken. Students are allowed a maximum of 12 courses to complete a 10-course master's degree.
Given the part-time nature of all Rabb School programs, and recognizing that working people frequently encounter unanticipated life experiences, students may take up to five years to complete a 10- to 12-course program. (Most students complete their degrees in less than three.)
Additional Satisfactory Academic Progress Requirement for Students Receiving Financial Aid
Federal regulations require that a student receiving federal assistance make satisfactory academic progress in accordance with standards set by the university. The Division of Graduate Professional Studies is responsible for monitoring academic progress within its graduate programs. To receive federal funding, a student must successfully complete two courses (B- or higher) in each semester in which he or she receives federal loans. If he or she fails to successfully complete two courses in a semester in which he or she receives federal loans, he or she will be allowed to receive federal loans for the next semester but will be placed on probation. If he or she fails to successfully complete two courses during the probationary semester, he or she will lose eligibility for federal loans from this point forward. A student may submit an appeal if there are extenuating circumstances that prevented him or her from successfully completing coursework for two subsequent semesters.
Requirements for the Degrees
Detailed information about the requirements for the degree programs offered by the Rabb School, Division of Graduate Professional Studies, can be found in a later section of this Bulletinon the website at www.brandeis.edu/gps. Please refer to these pages for the requirements and expected learning outcomes for specific degrees.
Auditing Courses
Auditing Rabb School courses is not permitted.
Change of Program
Courses may be dropped with modest financial penalty until the second week or online learning module, after which students may drop courses until the ninth (of 10) online modules with no refund of tuition. Final course grades below B – may not be applied toward a master's degree.
Incompletes
Incompletes are granted in exceptional cases, arranged between the student and the instructor and documented, including specific closure date, in the division’s office. Unaddressed incompletes become failures after the established deadline.
Transfer of Credit
Rabb School degree candidates are not permitted to cross-register either in other graduate programs on campus or in programs elsewhere, although they may with advance approval take a course elsewhere and transfer it to the Rabb School. Up to two courses not previously counted for any degree program may be considered for transfer into a Rabb School degree, although not as either of the final two courses in the program. Very occasionally, a student may test out of a particular course, waiving that requirement but replacing it with an additional course from the program.
International Students
Applicants whose first language is not English or who have not graduated with a bachelor’s degree from an English-speaking institution in Australia, Belize, the British Caribbean and British West Indies, Canada (except Quebec), Great Britain, Guyana, Ireland, Liberia, New Zealand, or South Africa must take and submit scores for the TOEFL or IELTS. Test scores should be no more than five years old.
The following tuition and fees are in effect for the 2014–15 academic year. These figures are subject to annual revision by the Brandeis University Board of Trustees.
Payment of tuition occurs per course registration and must be completed in full in order for the registration to be official and for students to attend the first online course module. Except under rare, prearranged circumstances, students not paid in full are not permitted to attend classes. Late registration, while unusual, is permitted on a space-available basis, the week before classes begin, and carries a late fee.
- Tuition per three-credit course: $3,1500
- Tuition per four-credit course: $4,200
- Late registration fee: $70 (in addition to the fees above)
- Course materials fee (dependent on course needs): $25-100
- Application fee for admission to a degree program: $50
- Application to graduate fee: $100
Refunds
All fees other than tuition (late registration, course material and application fees) are nonrefundable. Students who wish to cancel their registration and receive a tuition refund must state their intention to withdraw by completing a course add/drop form and submitting it to the Division of Graduate Professional Studies.
Tuition will be refunded according to the following schedule:
- Withdrawal before the first online learning module: 100 percent
- Withdrawal before the second online learning module: 75 percent
- No refund thereafter
Brandeis University, Graduate Professional Studies complies with all applicable refund policies of the state where an online learning student resides. We will calculate any applicable refunds in accordance with such state regulations as listed below. For those states that are not listed below, our refund policy will be as written on our website under Course Withdrawal and Refund Policy. www.brandeis.edu/gps/resources/tuition-and-payment.html.
In compliance with federal law, special refund arrangements apply to students receiving federal financial aid under Title IV (i.e. Federal Direct Stafford and PLUS Loans). Contact the Office of Student Financial Services for additional information.
Financial Aid
While the Rabb School of Continuing Studies offers no financial aid, students are able to participate in both federally and privately funded student loan programs, based upon eligibility. Arrangements are made on an individual basis through the Associate Director, in the Division of Graduate Professional Studies and the Office of Student Financial Services.
Federal Loans
Only the Federal Direct Unsubsidized Stafford Loan is available to graduate students. Applicants must file the Free Application for Federal Student Aid to qualify for this loan. Graduate students may borrow up to a maximum of $20,500 a year, not to exceed the cost of attendance, with an aggregate maximum of $138,500, with no more than $65,500 in subsidized loan funds. For the academic year 13-14, the interest rate on the Stafford Loan was a fixed rate of 6.21 percent and the origination fee was 1.072 percent.
Repayment of a Stafford Loan begins six months after the borrower ceases to be enrolled at least half-time. The standard repayment period is 10 years, during which time interest is charged. (Please go to www.studentloans.gov for information about alternate repayment plans.) Students are required to pay the interest during the in-school period, or have it capitalized and added to the loan balance, for the unsubsidized loan.
The terms for the above loan programs are subject to federal legislation, regulations and other guidance, and may change. Additional current information is available from the Graduate School.
Students wishing to apply for loans should contact the Office of Student Financial Services for application materials.
The Graduate PLUS Loan is a federal loan that allows graduate students to borrow up to their total cost of education less any financial aid received. The student must pass an independent credit review. For the 13-14 academic year, the PLUS Loan had an interest rate of 7.21 percent and an origination fee of 4.288 percent. Go to www.studentloans.gov to apply for this loan.
Additional Satisfactory Academic Progress Requirement for Students Receiving Financial Aid
Federal regulations require that a student receiving federal assistance make satisfactory academic progress in accordance with standards set by the university. The Division of Graduate Professional Studies is responsible for monitoring academic progress within its graduate programs. To receive federal funding, a student must successfully complete two courses (B- or higher) in each semester in which he or she receives federal loans. If he or she fails to successfully complete two courses in a semester in which he or she receives federal loans, he or she will be allowed to receive federal loans for the next semester but will be placed on probation. If he or she fails to successfully complete two courses during the probationary semester, he or she will lose eligibility for federal loans from this point forward. A student may submit an appeal if there are extenuating circumstances that prevented him or her from successfully completing coursework for two subsequent semesters.
Degree of Master of Software Engineering
The Master of Software Engineering prepares students to participate fully in integrated teams of software developers, software acquirers and software end users.
Students have the necessary software engineering skills and knowledge to ensure the delivery of reliable software to increasingly large, complex and international end-user markets (available online).
Program of Study
The degree of Master of Software Engineering requires one core course plus at least one choice from each of three core areas: programming, design and software engineering fundamentals. It further requires six electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates are able to:
- Apply a systematic, disciplined, quantifiable approach to the cost-effective development, operation and maintenance of software systems to the satisfaction of their beneficiaries, within some or all of the following areas of specialization: application development; database programming and management; network and Web security; Web development.
- Build solutions using different technologies, architectures and life-cycle approaches, in the context of different organizational structures, with demonstrated programming expertise in at least one language among C, C++, Java and C#.
- Foster the development, adoption and sustained use of standards of excellence for software engineering practices.
- Communicate effectively and think critically about a wide range of issues arising in the context of working constructively on software projects.
Degree of Master of Science in Information Technology Management
The Master of Science in Information Technology Management prepares students for knowledgeable leadership in the broadest scope of application of information technology.
By understanding information technology’s importance to an organization and its use in a global economy, students will acquire the skills and knowledge to direct the development and deployment of information systems of high quality (available online).
Program of Study
The degree of Master of Science in Information Technology Management requires six core courses and four electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates are able to:
- Develop and lead teams of technical people toward the achievement of established goals, and manage the development of their product.
- Identify the ways in which technology can be applied to solve both existing and anticipated problems.
- Leverage technology to realize strategic management goals and opportunities.
- Assure the quality and value of information to those who ultimately use it for decision making.
- Think, write and speak cogently and persuasively about ongoing and anticipated work with colleagues, end users and corporate leadership, and listen carefully to feedback.
Degree of Master of Science in Project and Program Management
The Master of Science in Project and Program Management provides current project managers and potential project managers with an integrated understanding of a broad scope of business functions at the upper-middle, team-leading level of corporate operations, combined with the technical skills and knowledge to analyze, organize and manage the expression of projects, on time and on budget.
Program of Study
The degree of Master of Science in Project and Program Management requires seven core courses and three electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates are able to:
- Initiate, plan, execute, control, evaluate and close out projects in a way that assures the delivery of the negotiated scope and quality level while meeting time and budget constraints.
- Effectively communicate the project/program status, issues, expectations and risks, both verbally and in writing, to project and program stakeholders.
- Demonstrate how projects contribute to an organization's ability to realize its strategic goals and business benefits.
- Exercise management and leadership skills in the conduct of programs and projects of various size, scope, and complexity that may be international in nature.
Degree of Master of Science in Bioinformatics
The Master of Science in Bioinformatics brings together disciplines including biology, computer science, statistical data modeling and information technology.
Students must develop an understanding of and be able to contribute directly to the analysis of biological data, the design of databases for storage, retrieval and representation of biomolecular data and the development of novel computational tools.
Students’ work will support better understandings of biological systems, human disease and drug development, ultimately affecting the practice of modern medicine.
Program of Study
The degree of Master of Science in Bioinformatics requires two foundation courses, three core courses; one advanced programming language, one scripting language, one database course, and four electives, totaling 12 courses (36 credits).
Learning Outcomes
Graduates are able to:
- Apply a variety of skills to the processing, storage, analysis and modeling of many types of biological data.
- Provide valuable insights into the understanding of complex biological systems and their quantitative data.
- Positively impact research projects in the corporate and academic sectors.
- Effectively communicate and present bioinformatic analysis to multidisciplinary project teams.
Degree of Master of Science in Information Security
The Master of Science in Information Security addresses the growing need for information security professionals who possess a balance of analytical skills and business sense. The program is unique in its emphasis on the policy, management and technology aspects of information security and risk management.
Students gain a combination of technology and management expertise that will enable them to make educated technical decisions in order to support enterprise-wide security objectives.
Program of Study
The degree of Master of Science in Information Security requires four core courses and six electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates are able to:
- Assess risks to the security of proprietary information in an organization and understand the technical, organizational and human factors associated with these risks.
- Evaluate information technology tools designed to protect against threats facing organizations.
- Assess the impact of security policies on existing complex systems and organizational objectives while simultaneously considering regulatory requirements and compliance.
- Oversee the information assurance lifecycle of an organization, including planning, acquisition, development and evolution of secure infrastructures.
Degree of Master of Science in Health and Medical Informatics
Health and medical informatics is the application of principles of computer and information science to the effective organization, analysis, management, and use of information in health care. With evolving health care reform, the development, implementation, evaluation, and management of information technology solutions are critical, and core technologies and standards must be addressed.
The Health and Medical Informatics program in the Division of Graduate Professional Studies addresses the growing need for professionals who need to possess both analytical skills and business acumen with the goal of improving health care delivery systems through information technology.
Program of Study
The degree of Master of Science in Health and Medical Informatics requires that students complete six core courses and 4 electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates are able to:
- Facilitate the development and advancement of emerging information technologies to improve health care delivery and cost efficiencies.
- Gain an in-depth understanding of new and existing health information management systems within the context of the U.S. health care system.
- Become proficient in the "language" of health care, navigate the rules around using medical data, and obtain relevant information to assess changes to the health care system.
- Participate in the development, implementation, evaluation and management of information technology solutions to improve patient care and the health care delivery process.
- Utilize health information technology for decision support, knowledge management, strategic planning, and outcomes assessment to optimize cost efficiencies in the health care system.
- Effectively interface between the data systems developers and the user community.
Degree of Master of Science in Strategic Analytics
Strategic Analytics are critical to the strategic management of any business or organization. The management, analysis, and use of the large sets of data that form the foundation of any business operation are what drive the strategic decisions that increase revenue and reduce costs for the organization.
The Strategic Analytics program in the Division of Graduate Professional Studies offers a comprehensive study of these two components: the data itself and its business application, analyzed through a specific set of tools and techniques. Through the study of predictive, descriptive and prescriptive analytics, students will learn to identify patterns and trends within data to interpret and communicate the results in valuable and practical terms.
Program of Study
The degree of Master of Science in Strategic Analytics requires that students complete seven core courses and 3 electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates are able to:
- Leverage technology to evaluate and apply analytic tools and techniques to manage large sets of data, distributed data, and cloud-based data
- Integrate leadership and communication skills with information technology, information management, and data science to maximize business intelligence and decision making
- Design innovative, cross-functional data analytics solutions for applied business strategies
- Identify and assess the opportunities, needs and constraints for data collection, measurement, tracking, analysis, reporting and overall management within a strategic organizational context
- Identify ways in which data can be analyzed, interpreted, reported and applied to solve or prevent existing or new business problems
- Communicate the value of strategic analytics as it relates to an organization’s bottom line through both revenue increase and expense reduction
- Bridge the gap between data and business by effectively communicating analysis results to drive strategic decisions and direction
- Lead analytics teams and projects
Master of Science in Online Instructional Design & Technology
Online Instructional Designers & Technologists apply theory, research, creativity, and problem-solving skills to design and improve programs and courses through the use of emerging and dynamic technologies and platforms.
The Online Instructional Design & Technology program in the Division of Graduate Professional Studies empowers students to develop the skills to assess, create, and manage web-based instructional materials, and to apply project management methodologies to the design, development, evaluation, and continuously improve of online learning courses and programs.
The program prepares students to apply technologies in order to develop online courseware products, using iterative and formative processes and evidence-based methodologies to design dynamic learning content and assessments. Students will be prepared to apply these skills within academic institutions and within training & development environments of the private and nonprofit sectors. Through the study of instructional design, technology, and online learning theories, students will gain the experience needed to solve instructional challenges, evaluate and use technology and multimedia tools, and ultimately create and deliver high-quality online programs and interactive courseware.
Program of Study
The degree of Master of Science in Online Instructional Design & Technology requires that students complete 6 core courses and 4 electives, totaling 10 courses (30 credits).
Learning Outcomes
Graduates with a Master of Science in Online Instructional Design & Technology will be able to:
- Apply evidence-based learning science and online pedagogical principles to the design, development, facilitation, an assessment of online courses and programs.
- Develop online instructional products and environments utilizing ADDIE and other models of instructional systems design.
- Design dynamic, adaptive, and interactive online multimedia-based instructional content and courseware.
- Evaluate and integrate instructional technologies, platforms, and collaborative tools for use in diverse instructional settings and applications.
- Demonstrate creativity and innovation in the application of instructional design principles and technologies to respond to instructional challenges and emerging trends.
- Lead and manage online instructional design and technology teams and projects, utilizing effective written and oral communication strategies.
Sequential Master's Degrees
Program of Study
Students must complete the first degree in its entirety. Transfer of up to three courses from the first to the second program is permitted (if appropriate). The student must fulfill any outstanding core requirements in the second degree, along with the requisite number of electives to total 17 to 22 courses (51 to 66 credits, depending on programs).
Listed below are courses of instruction for the Rabb School of Continuing Studies, Division of Graduate Professional Studies. Online courses are presented in 10 discrete weekly modules.
Most courses are available to all students qualified to take them. Course prerequisites are listed on the GPS website. Access to some courses is governed by the signature of the instructor. Other courses impose a numerical limit to preserve environmental conditions suitable to the pedagogy the instructor employs.
Generally, a course is offered with the frequency indicated at the end of its description. The frequency may be designated as every semester, every year, every second year, every third year or every fourth year. The university reserves the right to make any changes in the offerings without prior notice.
RBIF 100 Introduction to Bioinformatics Scripting and Programming
Note: This is a four credit course which runs for 13 weeks.
This course is a high-content introduction to scripting and programming with applications in bioinformatics. It is appropriate for students with little or no previous programming experience. The course focuses on the fundamentals of programming, including basic training in Python, object-oriented programming and graphical applications, and Perl programming including the BioPerl packages for parsing of biological data.
RBIF 101 Structural Bioinformatics
In this intensive course students will investigate the interrelationships existing amongst protein sequence, structure, and function through the lens of a structural bioinformaticist. Topics covered range from analysis of protein structure to domain classification, phylogeny, structural modeling, interaction site prediction, and structure-based drug design. Throughout the course students will be exposed to software tools utilized by structural bioinformaticists in their daily work.
RBIF 102 Genomics and Genetics
This course covers concepts of classic genetics, from Mendelian inheritance to quantitative and complex traits, associations and population genetics. It addresses the anatomy and function of genomes from humans and model organisms. Using the Human Genome Projects as an example, sequencing and mapping technologies are covered. Basic sequence analysis methods are introduced, along with techniques to navigate genome browsers and other relevant databases.
RBIF 103 Introduction to Probability and Statistics
This course introduces probability and statistics in the bioinformatics context, building a foundation for the “probabilistic thinking” method with applications to real life problems within biophysics, bioinformatics and data analysis. The course addresses probability theory with one and many random variables, classical and Bayesian methods, Poisson processes and Markov chains and applications to sequence analysis, gene finding and phylogenetics, and the fundamentals of the Mathematica programming language and its uses in computational probabilistic experiments.
RBIF 106 Drug Discovery and Development
There are high expectations for bioinformatics to contribute to drug discovery. This course explores issues faced during drug discovery and development. Topics include the drug discovery process, its major players and its origins; scientific foundations of drug discovery; target product profile; disease and drug target selection, sources of drug-like molecules; assays and screening; medicinal chemistry; pharmacology; toxicology; and clinical trials.
RBIF 108 Computational Systems Biology
Computational systems biology is a field that aims to provide an integrative, system-level understanding of biology through the modeling of experimental data. The course covers interacting systems by defining the basic structures of the biological network that allow a living cell to maintain homeostasis under different conditions and perturbations.
RBIF 109 Biological Sequence Analysis
This course provides a foundation in sequence analysis and associated algorithms. Topics include homology searching, multiple sequence alignment, transcription factor binding site discovery, phylogenetics, gene prediction, RNAi sequence analysis, Gibbs sampling, Markov chains, Hidden Markov models, Genetic algorithms, information theory, expectation maximization, maximum likelihood, Bayesian methods, Markov chain Monte Carlo methods.
RBIF 110 Molecular Modeling and Cheminformatics
This course covers modeling at the molecular level, with a focus on topics relevant to protein-ligand binding and cheminformatics. The first half of the course will cover topics in basic macromolecular structure and thermodynamics relevant to prediction and analysis of macromolecular interactions, and includes crystallography, energetics of hydrogen-bonding and hydrophobic interactions, and structure-based docking. The second half of the course will introduce the basics of cheminformatics, covering chemical structures, chemical descriptors, and methods for clustering and similarity-searching for compounds.
RBIF 111 R for Biomedical Informatics
This course is an advanced mathematics and applied statistics course that will introduce students to data analysis methods and statistical testing. It provides a foundation for Biological Data Mining and Modeling (RBIF 112) and Design and Analysis of Microarray Experiments (RBIF114). The course covers R (a statistical programming language) to introduce students to descriptive and inferential statistics, basics of programming, common data structures and analysis techniques. The course covers methods important to data analysis such as t-tests, chi-squared analysis, Mann-Whitney tests, correlation and regression, ANOVA, LDA, PCA, tests of significance, and Fisher’s exact test.
RBIF 112 Biological Data Mining and Modeling
The development of new bioinformatics tools typically involves some form of data modeling, prediction or optimization. This course introduces various modeling and prediction techniques including linear and nonlinear regression, principal component analysis, support vector machines, self-organizing maps, neural networks, set enrichment, Bayesian networks, and model-based analysis.
RBIF 113 Biological Database Systems
In order to be properly utilized, biological data storage systems must be designed to cross-reference against a host of different sources. In addition, biological data tends to have certain formatting issues with storage and transmission. This course addresses these topics by introducing relational databases and their design as related to biological data management. The formats of common public repositories are covered, such as NCBI and ENSEMBL, as well as federation techniques between different types of data. This course includes methods of data transfer (BioPax, MLs, and others).
RBIF 114 Whole-Genome Gene Expression Analysis
Microarrays are routinely used in genomic studies to detect changes in mRNA expression levels. These experiments have fundamental statistical and data processing challenges associated with them. This course covers: the statistical aspects of experimental design, biological and technical replicates, preprocessing, quality assessment, parametric and non-parametric statistical tests, multiple-hypothesis testing, P-value correction and false discovery rates, visualization techniques (e.g. heatmaps, volcano plots), and biological significance (e.g. functional annotation, pathways, hypergeometric tests, gene set enrichment).
RBIF 115 Statistical Genetics
This course covers methods in statistical genetics used to detect disease or quantitative trait loci in experimental and human populations. Basic concepts in Genetics, Genomics and Genetic Epidemiology are reviewed, with an emphasis on the statistical and practical issues involved in genetic analysis. Both linkage and association approaches will be covered, with a focus on applications in the human genome wide association (GWAS) setting for both SNPs and CNVs. Approaches to extracting and enriching GWAS through genotype imputation, GSEA, meta-analysis and genetics of gene expression analysis will also be covered, along with topics relevant to pharmacogenetics and techniques to analyze next generation sequencing data in a population setting.
RBIF 120 Advanced Topics in Computational Biology
This course introduces the basic techniques of bioinformatics research and its grounding principles in the scientific method. A committee of instructors assists each student in the design and execution of an advanced research project in computational biology. General focus for independent student projects will be chosen by the faculty committee, usually focused on a systems biology question. Student projects must incorporate programming and database-focused integration and management of empirical data, and involve two or more of approaches in systems modeling, sequence analysis (genomics/proteomics), artificial intelligence/pattern detection, discrete mathematics and statistics, or phylogenetics.
RBIF 123 Java Programming for Bioinformatics
This course provides a foundation in bioinformatics and scientific computing using the Java programming language. Following a brief introduction to Java and integrated development environments, the course focuses on developing basic bioinformatics tools, including the use of the BioJava API to retrieve and manipulate sequences, advanced I/O and indexing techniques to handle and search large sequence databases, JDBC methods to query complex genomic databases, and the application of code optimization techniques and numerical recipes to CPU intensive bioinformatics algorithms.
RBIO 101 Molecular Biology Lab: From DNA to Protein
This hands-on course covers basic molecular biology techniques, including how to manipulate DNA and RNA; how to clone a gene using polymerase chain reaction; how to insert the cloned gene into plasmids; and how to express the gene and translate it into a protein. Basic detection and imaging techniques are applied to visualize DNA, RNA and proteins. This course provides the necessary ‘wet lab’ experience required to successfully communicate and collaborate with biologists.
RBIO 102 Molecular, Cell, and Developmental Biology
Note: This is a four credit course which runs for 13 weeks.
The course covers the basic concepts of molecular, cell and developmental biology. Concepts addressed include the anatomy of cells, its building blocks and their function; genetic information, how it is stored, replicated and translated into proteins; inheritance and genetic variation; DNA technology and relevant experimental methods; communication between cells and their environment; regulation and pathways; development and cancer. The course also covers how this knowledge is applied in biotech and pharmaceutical companies, and the related bioinformatics challenges.
RCOM 102 Professional Communications
This course prepares professionals with communication skills necessary for success in their fields. The course addresses interpersonal, small group and public communication, and involves extensive practice writing and speaking on a variety of informative and persuasive topics.
RHIN 110 Perspectives on Health/Medical Information Systems
This course serves as an introductory course in the Health and Medical Informatics curriculum. Students interested in the Health Care field will be able to gain the fundamental understanding of Health Care Systems, from provider types to vocabularies to efficiencies, and the impact of Information Technology on the Health and Medical Informatics discipline. Through key assignments, case study analysis, and a research project, students will be able to explore and gain perspectives on Health and Medical Informatics in the context of their own interest fields. Additionally, actual applications of IT in the Health and Medical Informatics domain, from clinical information systems to e-Health, will be analyzed.
RHIN 115 Health Data and Electronic Health Records (EHRS)
This course is designed to provide current and aspiring health/medical IT professionals with an understanding of the challenges of collecting and maintaining electronic health data. The course focuses on issues specific to health data and the systems implemented to collect and store it. This includes an overview of various types of hospital systems; methods used to interface between systems; and operations issues typical of hospital systems. The course also includes a study of controlled medical vocabularies typically used to define various types of health data as well as a survey of existing and evolving government driven standards and regulations.
RHIN 120 Health/Medical Information Systems Security
This course addresses security, privacy, and compliance issues as they impact health information systems. The course explores and evaluates the moral and ethical concepts of information security. Students will explore security issues including restricted access and physical security of hardware/software along with the evaluation of information security tools. The course covers health data integrity, risks, and audit ability techniques along with regulatory compliance, confidentiality and privacy of patient data. The overall goal of the course is the evaluation and implementation of security in health information systems.
RHIN 125 Data Analysis and Decision Support for Health Informatics
This course is designed to familiarize students with the different types of healthcare data, assure the quality of the data and how to understand and communicate the information provided in support of effective decision making by the various stakeholders of the healthcare system. Study and discussion topics will include how to choose the correct information for different decisions and communicate its meaning to users. Students will evaluate statistical methods and tools. The difference between research databases and operational databases will be covered along with techniques to effectively communicate quantitative healthcare data using tables and graphs. Methods for choosing the right medium will be explored in depth.
RHIN 126 Advanced Health Care Data Analytics
This course will provide an in depth and real-world understanding of modern day health care data analytics. Students will be able to understand the business goals and objectives as to why various types of health care organizations and emerging models of care are utilizing and dependent upon health care data analytics. Students will be able to understand the importance of the various types of electronic healthcare systems and integration models in order to ensure accurate and reliable data in providing effective and efficient health care data analytics. Through assignments, case studies and class exercises, students will be able to understand the tools and techniques used to evaluate key components of health care analytics including operations, financial, quality, utilization, care retention, policy and contract management. Furthermore, the understanding of payor claims data and various types of healthcare data standards will be an integral part in understanding the foundational elements in providing health care analytics. Finally, students will not only be able to analyze and interpret various categories of health care data analytics, they will also be shown the most effective ways to illustrate and present data to a number of different types of key stakeholders in various health care organizational settings.
RHIN 130 Health Care Delivery in the U.S.
The healthcare delivery system in the U.S. is complex and in order to navigate it successfully students must have a fundamental understanding of the events and policies that have shaped the current environment in which they will be working. In addition to providing an overview of how the U.S. system has developed, this course will place a substantial focus on how healthcare data has developed over time and the ways in which it has informed the changes to the delivery system.
RHIN 150 Emerging Technologies in Health/Medical Informatics
In today’s dynamic health care information technology environment, emerging technologies represent a critical and exciting field of study. Advances in technologies across all aspects of health care promise to make dramatic impacts in terms of the efficiency and efficacy of care with major implications for clinical quality and cost. This course introduces students to a number of emerging classes of health care information technologies. In addition, the course considers the unique challenges that the healthcare industry presents in terms of planning, implementation, and adoption of new technologies. While the content of the class is dynamic and continually evolving, emerging technologies are broad enough to be split into static categories. The categories present emerging technologies that represent the major fields within Health and Medical Informatics, including: Health/Medical information systems (including hospital-based information systems, billing, scheduling, etc.), Clinical/decision support systems, including standardized language lexicon Electronic Health Record (EHR) and Health Information Exchange (HIE) technologies including integration issues and standards. E-health, telemedicine, connected health, location-based technologies, personalized medicine.Inter-disciplinary integrations: Bioinformatics (Biomedical informatics), etc.
RHIN 160 Legal Issues in Health and Medical Informatics
This course will offer students an opportunity to understand an historical perspective of Health Law, including how to assess liability in the workplace, the impact of information management and health care records, medical malpractice, risk management, current ethical and legal dilemmas in the practice of health care. This course focuses on some of the legal issues encountered in creating electronic interfaces between patients and the health care system in a variety of ways in which health care data is being utilized to support and enhance patient care, including documenting medical encounters, and serving as a benchmark of provider quality. Topics covered will include statutory and case law applicable to medical records and the developing regulatory infrastructure for such records. We will discuss the importance of use of electronic data in medical practice, institutional healthcare information systems, the inter-institutional record systems, and the risks, benefits and challenges, including how to manage risk of the employer and patient through the use of health information management medical records and how to determine personal risk and how to recognize potential litigious issues.
RHIN 170 Clinical Business Issues in Health Informatics
This course is an introduction to health care business systems and models with a particular emphasis on the value of IT to the organization. This includes departmental design and management, capital and operating budgets, the budget planning process, and infrastructure design and strategic planning. Other topics include evaluation of vendors, vendor selection, purchase agreements and contracts, writing an RFP, analyzing an RFP response, clinical administration systems, and the design and management of integrated delivery networks.
RHIN 180 Strategic Application of IT in Healthcare
This course will examine the strategic application of information technology in healthcare organizations. The course will focus on the challenges facing the health care CIO/Director with respect to organizational structure, alignment with enterprise strategy, portfolio management, and regulatory compliance. In addition the course will look at how the application of IT can transform healthcare delivery in the current environment.
RHIN 200 Health/Medical Informatics Independent Study Project
The purpose of this course is to provide students an opportunity to demonstrate mastery of a core competency in the health and medical informatics field. Students will write an in-depth research paper that summarizes and reflects upon their work. Prior to registering for this course, students must have an agreement for supervision from a faculty member and an approved statement of intent that includes an abstract of the project along with its objectives and preliminary milestones.
RIAS 101 Foundations of Information Assurance
Foundations of Information Assurance provides an understanding of the fundamental elements and technology “building blocks” of information assurance and computer security. The objective of the course is to provide coverage from the ground up on applied security concepts and technologies related to IT infrastructures, along with the attacks, threats and vulnerabilities currently faced by organizations. This course will expose students to fundamental security technologies and concepts in the areas of access control, cryptography, telecommunications and network security, application development security, and physical (environmental) security. This course provides the foundation for the remaining courses in the Information Assurance program.
RIAS 102 Foundations of Security Management
Foundations of Information Assurance management will expose students to higher-level security concepts, infrastructures, standards, protocols and best practices that are necessary for today's Information Assurance professional. Building on the knowledge of fundamental security technologies covered in Foundations of Information Assurance, students will develop an understanding of the fundamental tenets of information assurance solutions for businesses, government agencies and enterprises which require the establishment of a comprehensive security strategy and execution plan. This course will expose students to key concepts and principles in security operations; security architecture and design; information security governance and risk management; business continuity and disaster recovery planning; and topics in legal, regulations, investigations and compliance.
RIAS 110 Applied Cryptography and Access Control
Prerequisites: This course assumes prior knowledge of programming in any popular language for applications development.
This course covers the concepts, applied mechanisms, and practices of using cryptography and access control techniques in software applications. These techniques address security requirements such as confidentiality, integrity, authentication, authorization, and accountability, and have become the vital part of all business applications and electronic transactions. Concepts explored include common IT security challenges; critical application security exploits; the role of cryptography and its applied mechanisms; access control principles and techniques related to personal identification and strategies for enabling stronger authentication using Public-Key Infrastructure (PKI), smartcards, and biometrics; enterprise identity management concepts; industry standards for enabling identity provisioning, single sign-on, and federation.
RIAS 115 Information Technology Forensics and Investigations
This course covers both the principles and practice of digital forensics. It investigates the societal and legal impact of computer activity including computer crime, intellectual property, privacy issues, legal codes; risks, vulnerabilities, and countermeasures; forensic tools and techniques to uncover illegal or illicit activities left on disk and recovering files from intentionally damaged media; specific manifestations of cyber crime, including hacking, viruses, and other forms of malicious software; methods and standards for extraction, preservation, and deposition of legal evidence in a court of law. The course maps to the objectives of the International Association of Computer Investigative Specialists (IACIS) certification to provide credible, standards-based information.
RIAS 120 Securing Applications, Web Services, and Software-As-A-Service (SAAS)
This course covers applied security concepts, technologies, techniques, patterns, best practices and checklists intended for securing Web based applications, XML Web services and SOA. The course illustrates the real-world security challenges in IT applications and drills down on strategies for identifying security threats and risks; adopting a security design methodology; implementing security architecture using patterns and best practices; and performing security testing and production deployment.
RIAS 125 Principles of Incident Response and Disaster Recovery
This course presents methods to identify vulnerabilities and take appropriate countermeasures to prevent, mitigate, and manage information failure risks for an organization. The course provides a foundation in disaster recovery principles, addressing concepts such as incident response; disaster recovery planning; risk assessment; policies and procedures; roles and relationships of various members of an organization; implementation of the plan; testing and rehearsal of the plan; and actually recovering from a disaster to insure business continuity.
RIAS 130 Software Security Testing and Code Assessment
This course examines testing for security vulnerabilities, both as part of the security development lifecycle and as part of an auditing program that ensures that security policy objectives are met. The course addresses the importance of a security development process, and demonstrates how security testing is a critical component in that process. Concepts covered include threat modeling techniques and patterns; creation of tests to determine that these threats have been mitigated; evaluation of the effectiveness of these tests; assessment of issues related to secure deployment and communications following software delivery; auditing frameworks, including COBIT, ITIL, and NSA INFOSEC; and the role of software in demonstrating compliance with external regulations and internal security policy.
RIAS 140 Securing Virtualized and Cloud Infrastructures
This course will provide coverage from the ground up on applied security concepts and technologies related to IT virtualization and cloud infrastructures as well as the accompanying threats and vulnerabilities faced by organizations. Building on an understanding the basics of virtualization and cloud infrastructures (Public, Private and Hybrid Clouds) and delivery models (Software As A Service - SaaS, Platform As A Service - PaaS, Infrastructure As A Service - IaaS) the course focuses on the development of security practices, policies, awareness and compliance program, and examine accompanying legal and regulatory issues. We also learn how to deal with non-trivial issues in the Cloud such as load balancing, caching, distributed transactions, and identity and authorization management. Students will come away from the course having learned the benefits of virtualization and cloud computing, as well as how to cope with the unique demands that such environments make on the overall security posture of organizations.
RIAS 145 Secure SDCL (Software Development Life Cycle)
This course will explore secure software development and engineering processes through a set of activities performed to develop, maintain, and deliver a secure software solution from ground up. The course will dig deep into the concepts and applied techniques of how to incorporate security throughout software development life-cycle processes including Architecture, Design, Testing, and Maintenance. This course will deliver both theoretical and practical security guidance for developing the various process components in the context of both waterfall and iterative application development models.
RIAS 150 Principles of Risk Management in IT Security
Awareness of the risks related to confidential information, intellectual property, and the consequences of disruptions to our IT infrastructure is going mainstream. But security leaders still must bridge an important language gap in their discussions of risk, by making a business connection between the “unrewarded” risks of security and compliance, and the “rewarded” risks of operations, innovation, and growth. This course will review practical methods for quantifying the uncertainties related to business decisions about information security, and for making risk-based decisions based on reducing those uncertainties by measurement and observation.
RIAS 155 Secure Mobile Applications and Data
This course appraises vulnerabilities and threat vectors associated with Mobile Computing Devices. Specific emphasis on mitigation techniques including security configurations as well as security software.
Topics will include the following: Mobile Computing Overview, Wireless Communications Infrastructure Vulnerabilities, Wireless Communications Infrastructure Vulnerabilities Mitigation Techniques, Mobile Platform Vulnerabilities, Mobile Platform Vulnerabilities Mitigation Techniques, Mobile App Vulnerabilities, Mobile App Vulnerabilities Mitigation Techniques, Mobile Device Vulnerabilities, Mobile Device Vulnerabilities Mitigation Techniques and Organizational Mobile Device Security Policy Requirements
RIAS 172 Network Security
Network security is a broad term that can refer to the security of devices that comprise the network infrastructure, the traffic sent over that infrastructure, the hosts (clients and servers) attached to the infrastructure, the applications that utilize the network, the user community and the policies that govern usage of that network.
In this course, we will use the first four layers of the OSI protocol stack (physical, link, network, and transport) to introduce many aspects of network security. In particular, we will consider how devices at each layer provide “defense in depth” by securing communications traffic as well as preventing unauthorized access. Our examination will be enhanced by using various security tools to observe network traffic that illustrates how security can be applied throughout today’s enterprise.
RIAS 190 Special Topics in Information Assurance
The field of Information Assurance and Security is continually evolving. New standards are introduced, organizations adopt novel approaches and refine existing methodologies for protecting information. This Special Topics course facilitates the introduction of cutting-edge assurance and security practices as they are introduced in the industry along with topics not covered by the required and elective courses.
RIDT 101 Principles of Online Instructional Design
This course introduces students to the foundational instructional design methodologies and models commonly utilized in the design and development of online courses, training modules, or programs. Students explore the application of evidence-based learning science to online course development through instructional design systems such as ADDIE, outcomes-based backwards course design, and more contemporary models, such as SAM (Successive Approximation Model). Participants examine the roles and responsibilities of the instructional designer as they relate to the online learner, instructor, subject matter expert, and others. Students explore best practices related to synchronous and asynchronous delivery of online learning content. Throughout the course, students will apply macro and micro design principles and collaborate to design and create online lesson prototypes; write measurable learning outcomes and related assessments; select and curate appropriate learning resources; integrate task analyses; and design activities that foster online learning communities and promote collaborative learning in asynchronous environments.
RIDT 110 Foundations of Instructional Technology for E-Learning
This course introduces students to the technologies, systems, and toolsets commonly used to support the design, delivery, and assessment of synchronous and asynchronous online learning and training. Students explore the various types of platforms that support instructional design and online learning activities, including learning management systems (LMS), personal learning networks (PLN), open learning networks (OLN), content management systems, and others. Students will explore and evaluate a broad range of open and proprietary tools to support online instructional design, including communication and collaboration tools, assessment engines, electronic portfolios, rapid e-learning authoring tools, and others. Students will assess the capabilities of various instructional technologies to determine their efficacy in resolving online instructional challenges, and will investigate new and emerging tools.
RIDT 120 Learning Management Systems for Course Development
This course will introduce students to Learning Management Systems (LMS) as the primary content authoring tool for online instructional design. Students will compare the feature sets of a number of LMS platforms, and evaluate best practices and workflows for authoring within such systems. Students will explore methods for course facilitation using LMS-driven tools, and examine how the LMS can support both synchronous and asynchronous approaches to online learning. Then, as course creators, students will work in teams and use an LMS to author and build their own online course content. Through hands-on practice, discussion, and critique, students will practice applying sound instructional design practices in tool selection; effective course design; and facilitation of a collaborative and constructive learning environment.
RIDT 130 Online Facilitation and Assessment Strategies
This course emphasizes the application of learning science and cognitive theories in adult education, training, and professional development to the online learning environment. Students will explore the pedagogical underpinnings of online instructional design and apply these best practices to course design and facilitation. Students will also examine the process of gathering and evaluating data applicable to various aspects of improving human performance for the purpose of making instructional decisions, and will explore training/learning needs assessments, and best practices for outcomes-based assessment of learning, comprehension, and transfer of knowledge, in the online classroom and/or workplace learning environment. The course will emphasize online instructional techniques key to fostering the development of healthy online learning communities. Students will gain the ability to apply the principles of instructional design and online learning assessment in educational and corporate settings.
RIDT 140 Managing Instructional Design Projects
This course provides students the opportunity to apply best practices in the management of complex online instructional design projects, including the initiation, planning, execution, monitoring, and closure of instructional development projects, including practical techniques to develop and manage scope, budgets, schedules, quality, resources. The course will explore the application and integration of both traditional and agile project management practices to existing online instructional design and development methodologies. Students will analyze and demonstrate both the project management and business analysis responsibilities associated with the instructional development project life cycle.
RIDT 150 Instructional Design and Technology Practicum
This practicum course provides students the opportunity to exhibit their cumulative knowledge, skills, and creativity related to online instructional design and technology. Students will demonstrate their ability to integrate design, pedagogical and technological principles and skills by applying them to a real-world project. Students will serve in a consulting capacity, and work independently or in small groups with a subject matter expert or client on a real project. Alternately, students may create a solution for an existing case study on an e-learning project that requires assessment, design, development, project management, and evaluation. Through development of an actual online instructional design project/product, the practicum allows students to experience the application of the skills and knowledge they have acquired in the prerequisite courses, and will result in the development of a high-quality portfolio project.
RIDT 165 Competency-Based & Adaptive Instructional Design
Competency-based learning is a rapidly emerging trend in online learning for higher education and corporate training, as institutions transition away from the traditional time-based ‘contact hours’ to a system of learning assessment that focuses on individual mastery of skills or competencies. This course provides students with an opportunity to explore these new models from the online instructional design and technology perspective. Students will examine how adaptive learning techniques, technologies, and platforms can be utilized to support competency based learning, and how instructional materials and strategies can be modified and enhanced to deliver competency-based and adaptive learning courses in the online environment.
RIDT 170 Interactive Multimedia Courseware Design
This course provides students with the opportunity to explore and utilize a variety of creative E-Learning authoring tools to plan, design, develop, and deploy highly interactive courseware and multimedia learning resources. Students will apply instructional design best practices to the design and integration of both static learning materials, such as data-driven infographics, slide presentations, and icons; and dynamic content, such as video, audio podcasts, animations, interactive lessons, and simulations. Students will evaluate and compare the capabilities of a number of rapid E-learning authoring tools, and harness them to create high-quality online learning resources. The course will also emphasize the development of universally accessible multimedia.
RIDT 175 Digital Ethics & The Legal Landscape of Instructional Design
This course explores the evolving legal and ethical landscape in which instructional designers and technologists must practice. Students will examine legal issues arising from intellectual property, copyright law, including the fair use exception, the TEACH Act, and the Digital Millennium Copyright Act; federal laws related to accessibility for learners with disabilities; and FERPA, a federal law that protects the privacy of education records. Students will apply laws to realistic scenarios that arise in the design setting, developing best practices to minimize the risk of liability. Students will also explore the ethical challenges that arise in practice, including the creation of instructional materials that support a diverse learner audience, implications of the “digital divide,” and conflicts of interest stemming from opportunities for personal gain outside of the employment relationship. Students will work to develop their own ethical code to guide their professional paths.
RIDT 180 Learning Analytics for the Online Classroom
The collection and analysis of data has dramatically altered how decisions are made and resources are allocated in a variety of industries. In online instructional design and technology, learning analytics are emerging tools to improve how online students learn, and how employees are trained through data-informed course design and instructional practices. This course will provide students an opportunity to explore learning analytics and how they can be deployed in various contexts in the online instructional design and technology field. Students will explore the implications of learning analytics in their organizations, and evaluate how it relates to concepts such as educational data-mining and academic analytics. The toolsets and methodologies, ethics and privacy considerations, and the systemic impact of learning analytics on institutions and organizations will be explored. Students will evaluate the present state of data analytics for instructional design, and assess possible future directions of the field. Students will apply the concepts presented in the course to analyze, plan, and deploy small-scale learning analytics pilot projects.
RIDT 185 Special Topics: Emerging Innovations in Online Instructional Design
The field of Online Instructional Design & Technology is continually expanding and makes the news both national and globally as institutions of higher learning and corporate training operations alike are migrating their once traditional education programs into the online education space. This Online Instructional Design & Technology Special Topics course facilitates the introduction of cutting-edge instructional design practices—as they are introduced in the industry. This course provides students the opportunity to focus on the state of the art in online instructional design and distance education, including emerging theories, ideologies, and technology innovations. Students explore the changes to infrastructure and culture that must be considered to support and implement innovations in online learning. The course emphasizes creative applications of technology for staff and/or faculty development and training, learning content, academic and student/user support services, open source utilization and partnerships, peer learning, and self-directed learning paradigms. Students will critique and develop plans to creatively address gaps in the current capabilities of today’s instructional design and technology landscape.
RMGT 101 Perspectives on Information Technology
This course serves as an introductory course in the IT management curriculum. This course also serves as a strong foundation for the two-course sequence in strategic IT management: RMGT 102 and RMGT 103.
This course covers the wide range of technologies in use in modern organizations. The course covers the major issues involved in selecting and deploying particular technologies based on the requirements of a particular project. The course provides a foundation for future study in strategic deployment of information technology in support of the business.
RMGT 102 Strategic Information Technology: Operational Strategy
It is highly recommended that students successfully complete RMGT 101 prior to taking this course.
This course examines strategic operational issues from the perspective of the CIO or IT Director, exploring how IT organizations can best be managed. The course explores best practices for deploying limited financial and human resources for optimal results.
RMGT 103 Strategic Information Technology: Organizational Strategy
Prerequisite: RMGT 101.
This course covers strategic issues for the IT organization within the context of the larger organization and the relationship between the two. The course helps today's and tomorrow's IT Directors and CIOs effectively exploit information systems technologies within the context of a company's overall business needs.
RMGT 110 Leadership, Team-Building, and Decision Making
The course addresses the applicable organizational skills to function as a leader in an organizational setting, and places special emphasis on personal strategies for developing leadership skills. This course explores leadership as a process by which one person influences the attitudes and behaviors of others. It looks at leadership of large organizations and groups, including teams. Concepts covered include various leadership theories and models; leadership across cultures; leadership ethics and attributes; emotional intelligence; mentoring; team and relationship building; organizational change/development; and the role of the leader in establishing organizational culture and facilitating change.
RMGT 115 Decision and Knowledge Management
This course examines the relationship between knowledge management and information technology and its extensions for the innovative and strategic management paradigms of the future. The central message of the course is that knowledge, not money or technology, will be the primary economic unit of business in the twenty-first century. Concepts covered include the analysis of knowledge management as an organizational strategy; the characteristics of knowledge management systems; the building of knowledge management systems; and the implementation of knowledge management systems.
RMGT 120 Legal and Ethical Practices in IT
This course focuses on the important legal, ethical, and societal issues associated with managing information technology resources, from multiple perspectives: technical, social, and philosophical. It examines the different ethical situations that arise in IT and provides practical techniques for addressing these issues. Concepts addressed include file sharing, infringement of intellectual property, security risks, Internet crime, identity theft, employee surveillance, privacy, and compliance.
RMGT125 Managing Today’s Technology Professionals
There are significant challenges to be found in managing today’s technology professionals including the rate at which the knowledge on which they draw changes, their goals and incentives, and the way in which project teams comprised mostly of technical professionals can “age.” This course focuses on issues that are of special interest to those managing technology professionals including analysts, developers, technical specialists, and infrastructure support personnel. We also discuss the importance of organizational structure, the ways it can affect performance, and the criteria upon which it should be chosen. Also included is an examination of organizational cultures, a contrast and comparison of various organizational structures, and managing stress in the constantly changing IT environment.
RMGT 175 IT Security and Compliance
This course covers key bodies of knowledge and specializations in security, privacy, and compliance associated with enterprise information systems. The course explores the management of various technologies in emerging areas of information assurance including computer and network security, digital forensics, cryptography, and biometrics. Course concepts include cost/risk tradeoffs; technical, physical, and administrative methods of providing security and compliance; current privacy legislation; and technical means of providing privacy and IT compliance.
RMGT 180 Principles of Business Continuity Planning
Business continuity is the processes and procedures organizations use to help ensure that vital functions continue to effectively function during and following a disaster. Business continuity planning is an organizational activity designed to avert interruptions of vital organizational functions and to restore normal organizational functions as expeditiously and efficiently as possible.
RPJM 10 Microsoft Project for Project Management Professionals
This non-credit course covers both fundamental and practical approaches to use Microsoft Project to manage both individual and multiple projects. The components of Microsoft Project that effectively meet the needs of each of the five fundamental phases of the project management are demonstrated, with examples of both effective and ineffective techniques.
RPJM 20 Preparing for the PMP Exam
This non-credit course prepares students for the Project Management Professional (PMP)® certification, focusing on exam content from the Project Management Institute’s (PMI) Guide to the Project Management Body of Knowledge (PMBOK® Guide, the most current edition) and other resources. The course will also prepare students for the Certified Associate in Project Management (CAPM)® certification for project team members and entry-level project managers. The course uses a combination of online lecture materials, discussions, exercises, self-study, and quizzes to prepare students to apply for and take the PMP examination.
RPJM 101 Foundations of Project Management
This course covers the history, current practice, and future directions of project management. Principles and concepts of project management are presented and discussed within the context of the knowledge areas and process groups defined in the Project Management Body of Knowledge (PMBOK ®). Concepts covered include process groups from initiation through closure; techniques for estimating and reporting; management of risk, quality, resources, and communications.
RPJM 103 Project Scheduling and Control
Projects attempt to achieve maximum value for minimum cost, and they often compete with other projects and operations within the organization for resources and financing. This course covers recently developed methods and value based metrics that, properly applied, can significantly impact project and portfolio value and revenue. By quantifying each side of the classic Triple Constraint Triangle, the value returned by the project and its contribution to the organizational portfolio can be accurately assessed and optimized. The course focuses on the project as an investment, and addresses both the theoretical and practical skills necessary to successfully manage that investment. Techniques covered include Estimated Monetary Value of the project scope; critical path and precedence diagramming methods of scheduling; resource optimization; and decision-making processes that optimize both project performance and return on investment.
RPJM 110 Risk Management for Projects and Programs
This course covers risk management processes and techniques in depth, exploring the systematic and iterative approaches that encompass risk planning, identification, qualitative analysis, quantitative analysis, response planning, and monitoring & control. The course addresses risk management principles consistent with the PMBOK®. Techniques for building and applying a risk management toolkit are explored, as are methods to implement risk management programs within an organization.
RPJM 113 Negotiating and Conflict Resolution
Conflicts of interest are common in project and program management, business environments, and daily life. This course provides a framework to understand the basis of conflict, to select an appropriate conflict resolution strategy, and to employ tactics that optimize results for both individuals and organizations. Characteristics of negotiation explored include the two fundamental strategies of negotiation; frames of reference; value creation; value claiming; and the impact of both tangible and intangible factors on the negotiation process.
With globalization of project management and the implementation of virtual teams, the challenges to successfully resolve conflicts become increasingly complex. Approaches to conflict resolution differ among collocated and virtual teams, and cultural differences, interests, and values influence negotiation strategy and tactics. As each element of the conflict resolution process is explored, the course highlights special considerations for virtual team members. Extensive role play is incorporated in this course in order to demonstrate principles learned. To facilitate this activity, a webcam is required for this course.
RPJM 115 Challenges in Project Management
This course examines the various challenges that more often than not arise within the project lifecycle, threatening its success. It examines the reasons these issues occur, when in the lifecycle they tend to happen, and solutions for anticipating, preventing, minimizing and/or mitigating these challenges. Because many of the challenges faced by project managers are relationship-based, the course explores communication as a vital skill in project management.
RPJM 117 Program Management: Theory and Practice
Programs connect a company's strategic plans to the projects necessary to implement them. Programs frequently span many years, include multiple product releases, involve numerous and diverse stakeholder groups, and necessitate the establishment of a program office. This course covers the history, current practice, and future directions of program management. Concepts covered include program versus project, product, and portfolio management; the program manager role; the program life cycle, its phases and process groups, consistent with the PMI Standard for Program Management; themes of program management including benefits management, stakeholder management, and program governance; key program management deliverables; program office models; portfolio management concepts; and program management implementation within an organization.
RPJM 118 Procurement and Contract Management
This course covers the procurement process in depth, including concepts, principles and ethics, pricing methods, awards, and all phases of contract administration from both the seller and buyer perspectives. It explores the development of bids and requests for proposals; the evaluation of responses; and the capabilities and use of various types of contracts and pricing mechanisms. It addresses outsourcing (including market investigation, key risks, requirements definition and evaluations using performance based service agreements) and the evaluation and use of contract information systems.
RPJM 125 Special Topics in Project Management
The field of project and program management continually evolves. Project management professional groups such as the Project Management Institute (PMI) introduce new and revised standards each year; organizations adopt novel approaches and refine existing methodologies; updated industry data and case studies on the effectiveness of project management practices become available. This course facilitates the introduction of cutting-edge project management practices as they are introduced in the industry.
RPJM 130 Agile Project Management
Agile project management techniques are being applied within a growing number of companies of various sizes and industries, from the entrepreneurial to the conservative. This course covers characteristics and delivery frameworks for agile project management. The course also explores how agile methods differ from traditional project management, along with how to recognize projects that may be suitable for agile techniques. Additional topics include the values, roles, deliverables, and practices of Scrum; additional agile and iterative methods; scalability and enterprise-wide considerations.
RSAN-101 Foundations of Data Science and Analytics
This course provides a foundation of the history and primary methods of analytics, including predictive, prescriptive, and descriptive. The course will also examine the various uses of analytics and how these methods identify and leverage competitive advantage in the era of ever-growing information requirements. This course will utilize case studies, trends, techniques, and best practices as it thoroughly examines the topic of analytics.
RSAN 110 Business Intelligence, Analytics, and Decision Making
Using advanced analytics, organizations can study “big data” to understand the current state of the business and track evolving aspects such as customer behavior. This course provides students the opportunity to develop an in-depth and real-world understanding of modern day data analytics. Students will be able to understand business goals and objectives as to why various types of organizations are utilizing and dependent upon data analytics. The course explores the importance of the various types of information systems and integration models in order to ensure accurate and reliable data in providing effective and efficient data analytics. Along with this, the course examines data model infrastructures and data preparation, along with data analysis, integration, and knowledge discovery.
Students will be able to understand the tools and techniques used to evaluate key components of data analytics including operations, quality, utilization, policy, and management. Students will not only be able to analyze and interpret various categories of data analytics, they also will explore the most effective ways to illustrate and present data to a number of different types of key stakeholders in various organizational settings.
RSAN-120 Statistics and Data Analysis
Prerequisite: Foundations of Data Science and Analytics
This course presents fundamental principles of statistics in the context of business-related data analysis and decision making, including methods of summarizing and analyzing data, statistical reasoning for learning from observations (experimental or sample), and techniques for dealing with uncertainties in drawing conclusions from collected data. Topics covered include applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and nonparametric statistics.
RSAN-130 Strategic Analytics and Visualization for Big Data
Prerequisite: Statistics and Data Analysis
This course provides a practical foundation to big data and the data analytics lifecycle to address business challenges that leverage big data. The course covers basic and advanced analytic methods around big data, the purposes of visualization, statistical graphics, visualization for exploratory data analysis, and big data analytics technology and tools, including MapReduce and Hadoop.
RSAN-140 Social, Web and Marketing Analytics
Prerequisite: Statistics and Data Analysis
This course will provide an introduction to advanced analytics and measurement in the areas of social networking and media, web and marketing analytics. The topics covered include the history, tracking, performance, optimization, metrics, analysis, visualization, decision making, reporting and best practices in each of those three areas. E-commerce will also be covered as it relates to web and marketing.
RSAN-150 Data Governance, Security, Quality, and Ethics
Prerequisite: Foundations of Data Science and Analytics
This course will provide an overview of data governance, including building a governance infrastructure with organizational management, roles and responsibilities, stewardship, governance communications, regulatory compliance, privacy concerns, data security, and risk management. Data quality will be addressed as a continuous issue in data management, and the challenge it poses as the volumes of data increase and the uses for data expand. Data ethics is included as a critical topic in terms of privacy, data manipulation, data sharing and ownership, conflict of interest, and communications.
RSAN-160 Predictive Analytics
Prerequisite: Foundations of Data Science and Analytics
This course will focus on the fundamentals of predictive analytics as it relates to improving business performance. The course will cover predictive models, key modeling techniques, scoring, non-parametric regression and classification, principal components analysis and dimension reduction, time series, quality control methods, multiple predictor variables, and decision trees. The course will utilize best practices and case studies to illustrate how predictive analytics can facilitate educated decision-making to reduce costs, increase revenues, and provide competitive advantage across a variety of industries.
RSAN-170 Special Topics in Strategic Analytics
Prerequisite: Foundations of Data Science and Analytics, and potentially other core courses depending on the nature of the special topic.
The field of Strategic Analytics is continually expanding and makes the news both national and globally every day. This Strategic Analytics Special Topics course facilitates the introduction of cutting-edge data practices—particularly around big data--as they are introduced in the industry. This course will cover new standards and practices as they are introduced, novel approaches and refined existing methodologies, and updated industry data and case studies on the most recent developments and practices in the area of Strategic Analytics.
RSEG 102 Advanced Programming in Java
This course explores advanced topics of Java programming language, including object- oriented programming concepts; exceptions; generic programming and annotations; collections; Java foundations classes (JFC); delegation event model; layout managers; swing components including panels, menus, toolbars, and text components; multi-threading; streams and input/output programming; networking; and Java database connectivity (JDBC).
RSEG 103 Advanced Programming in C++
This course provides a solid foundation of C++ with focus on object-oriented concepts and programming techniques. Concepts covered include classes, objects, abstract data types, file processing, inheritance, encapsulation, polymorphism, overloading, reuse, and templates.
RSEG 105 Java Enterprise Programming
This course covers Java Enterprise Edition (JEE) with the following advanced topics: Java EE Applications Architecture; Servlets; Java Server Pages (JSP); JSP Custom tags; Unified Expression Language; Java Server Pages Standard Template Library (JSTL); Java Server Faces (JSF); Enterprise Java Beans (EJB); and Seam Framework.
RSEG 109 Object-Oriented Design
Object-oriented modeling and design form the foundation of many software projects today and are pre-requisites to developing in C++, Java, and other object-oriented programming languages. This course covers object modeling and design techniques as they are applied from the point the high-level project requirements are established, through high level and detailed design, to the point where implementation is ready to start. The course focuses on Unified Modeling Language (UML), an approach that combines previously competing object modeling theories, as well as concepts including distributed object frameworks; design patterns; existing object-oriented languages such as C++ and Java; and lifecycle and maintenance issues of object-oriented applications.
RSEG 110 UNIX Tools
This course covers UNIX programming tools and techniques including: UNIX operations; common commands; shells and shell programming; regular expressions and special characters; shells and shell programming; sed, awk, cron, and make. Comparisons to Windows are addressed to illustrate similarities and differences and to illuminate the UNIX system.
RSEG 113 Advanced Programming in C++ (Level 2)
This course covers advanced features of C++ needed to produce efficient, high-performance, and high-quality C++ code on large development projects. Concepts covered include the use of design patterns and programming idioms; Standard C++ Library and Standard Template Library (STL) classes; and best practices of programming techniques and issues of reusability, robustness, efficiency, and memory usage.
RSEG 120 Software Development Methodologies
This course covers non-programming related aspects and best practices of the software development process, from requirements engineering, architectural design, and quality management to software maintenance and process improvement. Concepts addressed include software engineering tools, models, and methodologies; requirements engineering and specifications; system modeling; business process analysis; VORD analysis; design foundations; high-level architectural design; control and distribution models; function-oriented design; object-oriented design; user interface design; estimating and scheduling; risk management; and software maintenance and improvement.
RSEG 122 Advanced Software Development Methodologies
This course is designed as a continuation of RSEG 120 Software Development Methodologies. This course will continue to explore software engineering through the remaining project processes – Architecture, Design, Testing, and Maintenance. This course will provide both theoretical discussion of the need for the various process components, but will also provide information useful in deciding when a particular is necessary or when it is excessive for a particular project. The course will cover the processes in the context of both waterfall and iterative development models.
RSEG 125 Foundations of Software Quality Assurance
This course covers a broad range of topics related to software quality assurance (SQA). The course explores the combined application of a variety of SQA components, including: SQA activities typically performed by external participants; extension of SQA activities to project schedules and budget control; SQA implementation issues, SQA risk management considerations; and costs associated with SQA.
RSEG 126 Release Engineering and Configuration Management
This course provides an introduction to theory, tools and techniques needed by software release engineers. It is intended to give students the skills to evaluate and establish tools to support structured development methodologies.
RSEG 127 Software Engineering Studio
This course provides an opportunity for students to work collaboratively on a complex software project. Organized in teams, students will analyze a software problem, develop requirements, designs, test plans, and deliver code. Students will synthesize skills learned in the Software Engineering program to deliver a significant project, under the guidance of faculty.
RSEG 128 User Interface Design
This course introduces user interface design principles and concepts of user centered design. User Interface concepts for web, desktop and mobile applications are practiced in a variety of design projects. Universal design concepts, accessibility design, navigational schemas and elements of screen design are also discussed.
RSEG 131 Software Testing Techniques
This course covers topics related to software testing methodology, with a focus on realistic, pragmatic steps for testing consumer and business software. Concepts covered include test cycles; testing objectives; testing in the software development process; types of software errors; reporting and analyzing software errors; problem tracking systems; test case design; testing tools; test planning; test documentation; and managing a test group.
RSEG 145 Linux Administration
This course covers a hands-on introduction to Linux installation, configuration, and administration, aimed at scientists and engineers who want to use Linux in a laboratory or similar setting. The focus is on individual users and small networks. Concepts covered include Linux installation; the GNOME desktop and RPM; managing users; automation (at, batch, and cron); backup and disaster recovery; mail servers; FTP and web servers; installing new software; complete project talks; and volume management. Applications of Linux for SMP and enterprise-class networking are not in the scope of this course, although the related skills can be applied to SMP and cluster computing.
RSEG 160 Computer Networks and Data Communication
This course covers the transport of multi-media information among distributed computer systems. It addresses how modern communication protocols support the architecture and design requirements of modern computer networks, including the Internet, and satisfy the differing requirements of the services that generate and use multi-media information. The "convergence" of real-time and non-real-time information transmission and processing is emphasized. The course covers the services that require secure, errorless, and very high speed transmission of inter-related real-time and non-real-time information, and how computer network architects and designers achieve this. Usually offered every year.
RSEG 161 Web Development Technologies
This course provides an extensive examination of client and server side technologies used in developing web applications. On the client side, concepts addressed include how to create attractive and well-functioning web pages using XHTML, Cascading Style Sheets (CSS) and JavaScript. On the server side, concepts addressed include web development with servlets, JavaServerPages (JSP), JSP Custom Tags, Java Standard Template Library (JSTL), JavaServerFaces (JSF), Ant, and Ajax, and how web applications, built with these technologies, access and interact with databases using Java Data Base Connectivity (JDBC).
RSEG 165 Design Patterns
Prerequisites: RSEG 102 or RSEG 103 or RSEG 109 or equivalent.
Design patterns, an advanced area in object-oriented design, focus on solutions to problems commonly found in the design of object-oriented programs. This course covers the fundamentals of the core patterns: creational, behavioral, structural, and system patterns. Concepts covered include how to select a design pattern appropriate for a particular design problem; how to apply/implement this pattern in a language, such as Java or C++; and how these patterns are used extensively in the Java programming language and Java APIs, including patterns for reflection, security, AWT/Swing, RMI, JDBC, and J2EE.
RSEG 167 Service Oriented Architecture: Distributed Enterprise Computing
Service Oriented Architecture (SOA) has transformed the focus of enterprise computing from fine-grained, technology-oriented entities to business-centric services with business-level transaction granularity. This course explores SOA as an architectural blueprint which incorporates and integrates many different technologies with a focus on defining cleanly cut service contracts with a clear business orientation. The course investigates the fundamental principles system and application architects need to establish SOA at the enterprise level. The course explores the core service oriented concepts and best practices required for designing and implementing a distributed enterprise computing architecture.
RSEG 170 Database Management
This course covers data modeling, including relational, object-oriented, and object-relational database design concepts and issues. Concepts addressed include relational theory and database design; entity relationship modeling; normalization; issues of design and implementation; issues of database integrity, security, recovery and concurrence; and object-oriented databases.
RSEG 171 Data Warehousing and Data Mining
This course covers the foundations of data warehousing and data mining, and then explores how these technologies convert information into knowledge. Data warehousing is compared and contrasted with operational databases, and the use of various data mining techniques are considered in terms of a variety of problems. From a technical perspective, a special emphasis is placed on data warehouse design and the most common implementation issues.
RSEG 175 Mobile Computing
Mobile devices are increasingly prevalent and consequently demand attention from organizations. Mobile devices are not only a telephone -- they are small personal computers including smart phones, PDAs and tablets/iPad. The devices allow the user to access the Web, as well as introduce a world of applications. The Web sites and applications used through a mobile device have serious business impact and potential. This course covers the study hand-held of mobile devices and teaches hands-on approaches to working with them. Concepts addressed include how to create Web sites for mobile devices and creating custom device-specific applications. Assignments will give students the opportunity to create web sites and mobile applications that they can run on simulators and/or on their own mobile devices. Having a mobile device is not required and will not impact coursework or grade.
RSEG 176 Cloud Computing
The data center is increasingly virtual. In this class, students will explore "cloud"-based services, ranging from specific, internet-based software suites such as Google Docs or Salesforce.com ("Software as a Service," or SaaS), through platform-based systems (PaaS) such as Microsoft's Azure environment, to cloud-based infrastructure (IaaS) such as Amazon’s Web Services. While cloud-based services are especially well-suited to Agile development, and to exploring new SaaS products and services without committing to Enterprise installations, there is virtually no part of the Enterprise not affected by these new paradigms.
We will explore a wide variety of services, focusing on where they are familiar, where they differ from the familiar, and how to work in a heterogeneous world with both. We will talk not just about how new ways of working are enabled, but how some valued current ways of handling security, not to mention version control, backup, security, and disaster recovery are changed—usually, but not always—for the better. Finally, we will look at how the cloud enables us to work with more data than ever before, "Big Data"—NoSQL databases and scalable infrastructure (e.g., Hadoop).
Students will learn how to evaluate the various cloud-based services and how to communicate that evaluation to decision-makers in the organization. There will also be a hands on practicum using Amazon Web Services (AWS) and exploring the most common features of Infrastructure as a Service (IaaS), and how IaaS, overall, differs from older paradigms of systems management and program architecture.
RSEG 177 Enterprise Application Development with Spring Framework
Enterprise Application Development with Spring Framework Spring Framework provides for Java Enterprise Development significant improvements in developer productivity, application performance and quality. Spring is powerful and easy-to-use because of its unique combination of a complete, lightweight container that allows developers to build a complex application from loosely-coupled Plain Old Java Objects (POJOs) and a set of easily understood abstractions that simplify construction, testing, and deployment. The course will reflect the latest features, tools, practices Spring offers to Java developers. The course begins by introducing the core concepts of Spring and then quickly launches into a hands-on exploration of the framework. Using hands-on applications, the course shows how to build simple efficient JEE applications with Spring.
RSEG 178 Windows Communication Foundation Programming with C#
This course provides an in-depth study of Windows Communication Foundation (WCF), which is Microsoft’s state-of-the-art service programming model. Topics covered include basic concepts of service oriented architecture and WCF, building, testing, and debugging WCF services, WCF best practices, applying LINQ to Entities to WCF services, securing WCF services, controlling transactions of WCF services and extending WCF services.
RSEG 180 Advanced Programming in C#
This course covers the programming language C# (pronounced “C sharp”), used to develop Windows applications. The focus of the course is learning the .NET programming environment, Windows programming and the syntax and capabilities of the C# language. Concepts covered will include Microsoft Visual Studio .NET IDE, C# language syntax, control structures, arrays, exception handling, Windows graphical user interface, multithreading, strings, graphics and multimedia, files and streams, XML, database SQL and ADO .NET, ASP .Net, web forms and web controls, ASP .NET and web services, networking, data structures and collections.
RSEG 290 Special Topics
Special topics courses are offered each semester. Please see the Schedule of Classes for specific topics offered.
RVTM 101 Foundations of Virtual Management across Cultures and Geographies
This course will introduce an analytical framework for assessing the complex and varied geographic, cultural and regulatory environment(s) in which virtual team members work. It will provide strategies for recognizing and responding to: 1) cultural and individual diversity; 2) relevant local, state and regional regulatory structures and 3) ethical dilemmas that may emerge in the management of virtual teams, particularly in the context of globalization. In keeping with the Division's philosophy, the general framework will be used to analyze specific material from case studies and students' own work experience.
RVTM 110 Management of Virtual and Global Teams
Prerequisites: RVTM 101 or RPJM 114.
This course explores techniques for building, leading, managing, and motivating teams that reside in multiple locations. The course addresses methods to overcome the challenges of leading a virtual team with members in various geographical locations, including satellite and global offices and telecommuters. Concepts covered include virtual team structure; effective multi-cultural communication; motivation and performance considerations; knowledge sharing and knowledge management in a virtual, distributed team.
RVTM 115 Social Media and Collaboration Technology in Organizations
Prerequisites: RVTM 101 or RPJM 114.
Organizations are increasingly relying on collaboration technology and internal social media tools to participate together in projects and team meetings, to perform their daily work, and to share and store information. This course explores a number of collaboration and social media tools that organizations can use to communicate person-to-person and as a group. Concepts covered include the principles that make e-collaboration successful; internal social media tools; collaboration suites and knowledge resource tools; information sharing, information broadcasting and information gathering techniques; and hands-on experience with forming virtual teams for projects in order to research and practice various social media and collaboration technologies.
RVTM 120 Organizational Behavior
This course explores the roles of individuals and teams within organizations and the skills and techniques required to manage successfully in the diversified organizations of the 21st century. Social networks and virtual teams are replacing committee meetings. Values and self-leadership are replacing command and control management. Diversity and globalization have become challenges as well as competitive opportunities for organizations. Co-workers aren’t down the hall; they’re at the other end of an Internet connection located somewhere else whether it is another city, state or country. Concepts covered include employee motivation and behavior, team cohesion and leadership; social networks as a source of power and organizational effectiveness; relevance of organizational behavior concepts and practices to organizations located in diverse national cultures.
The course centers on three complementary perspectives, or "lenses", in an organization: the individual in the organization, and the foundations of individual behavior, including values, attitudes, job satisfaction, personality, emotions, and motivation; the groups and social processes, and the foundations of group behavior, including communication, group dynamics, team, management, decision making, power and conflicts; the organizational processes, and the concepts of organizational culture, principles of organizational structure, change management, learning and knowledge.
RVTM 125 Virtual Teams in Worldwide Environments
Virtual teams are used in many areas of today's economy, including manufacturing, information technology, the pharmaceutical industry, retail and education. Teams operate in increasingly distributed settings, crossing geographic, political and cultural boundaries. This course will consider how institutional (organizational) context affects the management of virtual teams. Institutions (corporate, state and trans/international organizations) influence such factors as labor, outsourcing, environmental impact, the use of social media, and intellectual property.
The subject matter to be considered is dynamic creating challenges for risk management and making it difficult to predict the trajectory of a manager's career. Published case studies and scholarly articles quickly become obsolete from a practical, management perspective. This course will therefore rely primarily on high-quality current news sources, reinforced by focused scholarly articles. The goal is to develop general analytical concepts and identify general challenges that will enable a manager to effectively absorb changing technological and political circumstances that may affect virtual team management in the future.
RVTM 140 Enterprise Content Management
Virtual and distributed teams often rely on team web sites and web-based content in order to share information. This course focuses on the concepts of publishing content on the web, and managing content through content management tools. Proven strategies for content creation, publishing, delivery and management are discussed.