A graduate program in Quantitative Biology

Last updated: July 31, 2014 at 3:51 p.m.

Objectives

The quantitative biology specialization is available only to students enrolled and working toward the PhD degree in one of the six participating graduate programs: biochemistry and biophysics, chemistry, computer science, molecular and cell biology, neuroscience, and physics. Individuals who want to obtain a PhD degree with a specialization in quantitative biology should apply to one of the participating PhD programs as described in the relevant section of this Bulletin. Enrolled PhD students who want to obtain the quantitative biology specialization should contact their PhD program’s graduate program chair or quantitative biology liaison for further information. Students wishing to obtain the specialization are advised also to contact one of the quantitative biology co-chairs for information about participating in the noncurricular educational activities of the quantitative biology program.

Faculty Advisory Committee

Jeff Gelles, Co-Chair
(Biochemistry)

Jané Kondev, Co-Chair, Liaison to Physics PhD Program
(Physics)

Irving Epstein, Liaison to Chemistry PhD Program
(Chemistry)

Bruce Goode, Liaison to Molecular and Cell Biology PhD Program
(Biology)

Pengyu Hong, Liaison to Computer Science PhD Program
(Computer Science)

Eve Marder, Liaison to Neuroscience PhD Program
(Biology)

Christopher Miller, Liaison to Biochemistry and Biophysics PhD Program
(Biochemistry)

Requirements for the Specialization to the Degree of Doctor of Philosophy

Students must complete all requirements for the degree of Doctor of Philosophy in the program in which they are enrolled. In addition, students must successfully complete three of the following four courses: 1) QBIO 120b, 2) BCHM 102a, 3) PHYS 105a, and 4) an approved computational methods course. Other courses may be substituted only with the written approval of the co-chair. The approved computational methods courses are QBIO 110a, COSI 178a, NBIO 136b, BIOL 107a and BIOL 135b. No more than one of the computational methods courses may be counted toward the three-course quantitative biology specialization requirement.

Courses of Instruction

(100-199) For Both Undergraduate and Graduate Students

QBIO 110a Numerical Modeling of Biological Systems
[ sn ]
Prerequisite: MATH 10a and b or equivalent.
Modern scientific computation applied to problems in molecular and cell biology. Covers techniques such as numerical integration of differential equations, molecular dynamics and Monte Carlo simulations. Applications range from enzymes and molecular motors to cells. Usually offered every second year.
Mr. Hagan

QBIO 120b Quantitative Biology Instrumentation Laboratory
[ sn ]
Focuses on optical and other instruments commonly used in biomedical laboratories to make quantitative measurements in vivo and in vitro. Students disassemble and reconfigure modular instruments in laboratory exercises that critically evaluate instrument reliability and usability and investigate the origins of noise and systematic error in measurements. Usually offered every year.
Mr. Dogic

Cross-Listed Quantitative Biology

BCHM 102a Quantitative Approaches to Biochemical Systems
[ sn ]
Prerequisite: BCHM 100a or equivalent.
Introduces quantitative approaches to analyzing macromolecular structure and function. Emphasizes the use of basic thermodynamics and single-molecule and ensemble kinetics to elucidate biochemical reaction mechanisms. Also discusses the physical bases of spectroscopic and diffraction methods commonly used in the study of proteins and nucleic acids. Usually offered every year.
Staff

BIOL 107a Data Analysis and Statistics Workshop
[ qr sn ]
The interpretation of data is key to making new discoveries, making optimal decisions, and designing experiments. Students will learn skills of data analysis through hands-on, computer-based tutorials and exercises that include experimental data from the biological sciences. Knowledge of very basic statistics (mean, median) will be assumed. Usually offered every second year.
Mr. Van Hooser

BIOL 135b The Principles of Biological Modeling
[ qr sn ]
Prerequisite: MATH 10a or 10b.
With examples from neuroscience, cell biology, ecology, evolution, and physiology, dynamical concepts of significance throughout the biological world are discussed. Simple computational and mathematical models are used to demonstrate important roles of the exponential function, feedback, stability, oscillations, and randomness. Usually offered every second year.
Mr. Miller

COSI 178a Computational Molecular Biology
[ sn ]
Open to advanced undergraduate students and graduate students.
Information and computing technologies are becoming indispensable to modern biological research due to significant advances of high-throughput experimental technologies in recent years. This course presents an overview of the systemic development and application of computing systems and computational algorithms/techniques to the analysis of biological data, such as sequences, gene expression, protein expression, and biological networks. Hands-on training will be provided. Usually offered every other year.
Mr. Hong

NBIO 136b Computational Neuroscience
[ sn ]
Prerequisite: NBIO 140b or PHYS 10a or approved equivalents.
An introduction to concepts and methods in computer modeling of neural systems. Topics include single and multicompartmental models of neurons, information representation and processing by populations of neurons, synaptic plasticity and models of learning, working memory, decision making and neuroeconomics. Usually offered every second year.
Mr. Miller

PHYS 105a Biological Physics
[ sn ]
Physical forces in living matter are studied from the perspective offered by statistical mechanics, elasticity theory, and fluid dynamics. Quantitative models for biological structure and function are developed and used to discuss recent experiments in single-molecule biology. Usually offered every second year.
Mr. Kondev