Steven DeLuca

Steven DeLucaAssistant Professor of Biology

Research Description

Developmental control of gene expression

Gene expression control in germ cells

The germline is an immortal cell lineage tasked with propagating the highest quality DNA. Germ cells regulate mutation and recombination rates, suppress selfish genetic elements like transposons, and produce gametes. The germline also gives rise to multiple somatic cell lineages to help it acquire nutrients and reproduce within a highly competitive and changing environment (the world). Perhaps to juggle its myriad functions, germ cells regulate genes differently than highly specialized somatic cells. We study how and why germ cells adopt this unique transcriptional state using a variety of tools we developed to purify and genetically manipulate germ cells in the experimentally tractable Drosophila ovary.

Developmental regulation of gene silencing

As somatic cells differentiate, they inhibit the transcription of many genes they will no longer need for their specialized purposes. This developmentally-regulated gene silencing is triggered and maintained by Polycomb-Group proteins. Using a new model system, Drosophila nurse cell differentiation, we study how Polycomb-Group proteins initiate silencing on the right genes at the right time.

Drosophila ovariole

Drosophila ovariole

Selected Publications