Eve Marder

Eve Marder, Professor of Biology at Brandeis UniversityUniversity Professor
Victor and Gwendolyn Beinfield Professor of Biology
Member, U.S. National Academy of Sciences

Research Description

Modulation of Neural Networks

One of the fundamental problems in neuroscience is understanding how circuit function arises from the intrinsic properties of individual neurons and their synaptic connections. Of particular interest to us today is the extent to which similar circuit outputs can be generated by multiple mechanisms, both in different individual animals, or in the same animal over its life-time. As an experimental preparation we exploit the advantages of the central pattern generating circuits in the crustacean stomatogastric nervous system. Central pattern generators are groups of neurons found in vertebrate and invertebrate nervous systems responsible for the generation of specific rhythmic behaviors such as walking, swimming, and breathing. The central pattern generators in the stomatogastric ganglion (STG) of lobsters and crabs are ideal for many analyses because the STG has only about 30 large neurons, the connectivity is established, the neurons are easy to record from, and when the stomatogastric ganglion is removed from the animal, it continues to produce rhythmic motor patterns.

Work in the lab centers on three main questions:

  1. How do neuromodulators and neuromodulatory neurons reconfigure circuits so that the same group of neurons can produce a variety of behaviorally relevant outputs?
  2. How can networks be both stable over the lifetime of the animal despite ongoing turnover of membrane proteins such as channels and receptors? How is network stability maintained over long time periods? To what extent do similar network outputs result from different underlying mechanisms or solutions?
  3. How variable are the sets of parameters that govern circuit function across animals? How can animals with disparate sets of circuit parameters respond reliably to perturbations such as neuromodulators and temperature?

To address these questions we employ electrophysiological, biophysical, computational, anatomical, biochemical, and molecular techniques.

Selected Publications

  • Marder E, Rue MCP (2021). From the Neuroscience of Individual Variability to Climate Change. Journal of Neuroscience. 41 (50) 10213-10221 doi.org/10.1523/JNEUROSCI.1261-21.2021 
  • Powell DJ, Marder E, Nusbaum MP (2021). Perturbation-specific responses by two neural circuits generating similar activity patterns. Current Biology. 31 (21), 4831-4838.
  • Morozova EO, Newstein P, Marder E (2021). Reciprocally inhibitory circuits operating with distinct mechanisms are differentially robust to perturbation and modulation. bioRxivdoi.org/10.1101/2021.09.16.460648
  • Zang Y, Marder E. (2021) Interactions among diameter, myelination, and the Na/K pump affect axonal resilience to high-frequency spiking. PNAS, 118 (32) e2105795118. PMID: 34353911 doi: 10.1073/pnas.2105795118.
  • Gorur-Shandilya S, Cronin EM, Schneider A, Haddad SA, Rosenbaum P, Bucher D, Nadim F, Marder E (2021). Mapping circuit dynamics during function and dysfunction. bioRxivdoi.org/10.1101/2021.07.06.451370
  • Rue MCP, Alonso L, Marder E (2021). A model of rapid homeostatic plasticity accounts for hidden, long-lasting changes in a neuronal circuit after exposure to high potassium. bioRxiv. doi.org/10.1101/2021.07.01.450770
  • Marder E (2021). Charismatic and Visionary Leaders. eNeuro, 8 (2). doi: 10.1523/ENEURO.0125-21.2021
  • Goaillard JM and Marder E (2021). Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience. Annual Review of Neuroscience. 44:335–57. doi.org/10.1146/annurev-neuro-092920-121538
  • Siegelbaum SA, Clapham DE, Marder E. (2021) Modulation of Synaptic Transmission and Neuronal Excitability: Second Messengers. Chapter 14. IN: Principles of Neural Science, 6th edition, Kandel, E.R., Koester, J.D., Mack, S.H. and Siegelbaum, S.A., eds. McGraw Hill, New York. pp. 301-323. ISBN: 9781259642234
  • Marder E (2021). Truth even unto its innermost parts. eLife, 10:e66850 doi: 10.7554/eLife.66850
  • Ratliff J, Franci A, Marder E, O’Leary T (2021). Neuronal oscillator robustness to multiple global perturbations. Biophysical Journal, 120(8) 1454-1468, doi.org/10.1016/j.bpj.2021.01.038
  • Powell D, Haddad S, Gorur-Shandilya S, Marder E. (2021) Coupling between fast and slow oscillator circuits in Cancer borealis is temperature-compensated. eLife, 10:e60454 doi: 10.7554/eLife.60454
  • Northcutt A, Kick D, Otopalik A, Goetz B, Harris R, Santin J, Hofmann H, Marder E, Schulz D (2019). Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis. Proc. Natl. Acad. Sci. (USA) 52: 26980-26990doi.org/10.1073/pnas.1911413116.
  • Marder E (2019). Watching Jellyfish. eLife. 8: e52669. doi: 10.7554/eLife.52669.
  • Gorur-Shandilya S, Marder E, O’Leary T (2019). Homeostatic plasticity rules that compensate for cell size are susceptible to channel deletion. bioRxiv. doi.org/10.1101/753608
  • Otopalik A, Lane B, Schulz D, Marder E (2019). Innexin expression in electrically coupled motor circuits. Neuroscience Letters. 695: 19-24. doi.org/10.1016/j.neulet.2017.07.016
  • Marder E (2019). Love Writing. eLife, 8: e45734. doi: 10.7554/eLife.45734.
  • Kushinsky D, Morozova E and Marder E (2019). In vivo recordings of the heart and pyloric rhythms in the crab, Cancer borealis. Journal of Experimental Biology. 222:5. doi: 10.1242/jeb.199190.
  • Alonso L, Marder E (2019). Visualization of currents in neural models with similar behavior and different conductance densities. eLife. 8: e42722 doi: 10.7554/eLife.42722.
  • Otopalik AG, Pipkin J, Marder E (2019). Neuronal morphologies built for reliable physiology in a rhythmic motor circuit. eLife. 8:e41728. doi: 10.7554/eLife.41728.
  • Bronk P, Kuklin EA, Gorur-Shandilya S, Liu C, Wiggin TD, Marder E, and Griffith, LC. (2018) Regulation of Eag by calcium/calmodulin controls presynaptic excitability in DrosophilaJ. Neurophysiol., 119: 1665-1680. PMCID: PMC6008097.

  • Ori H, Marder E and Marom S. (2018) Cellular function given parameter variation in the Hodgkin-Huxley model. Proc Natl Acad Sci (USA), 115: E8211-E8218. doi.org/10.1073/pnas.180855115. PubMed Central PMCID: PMC6126753.

  • Gorur-Shandilya S, Hoyland A, Marder E (2018). Xolotl: An Intuitive and Approachable Neuron and Network Simulator for Research and Teaching. Front. Neuroinform. 12:87 doi:10.3389/fninf.2018.00087 
  • Ratliff J, Marder E, O’Leary T (2018). Neural circuit robustness to acute, global physiological perturbations. Neuron 100:3609-623.e3.
  • Marder E (2018). Uniting the Nations of Science. eLife, 7: e44441. doi: 10.7554/eLife.44441
  • Haley JA, Hampton D, Marder E (2018). Two central pattern generators from the crab, Cancer borealis, respond robustly and differentially to extreme extracellular pH. eLife 7:e41877 doi: 10.7554/eLife.41877. 
  • Rosenbaum P, Marder E. Graded transmission without action potentials sustains rhythmic activity in some but not all modulators that activate the same current. J. Neurosci. 38: 8976-8988.
  • Haddad, S.A. and Marder, E. (2018) Circuit robustness to temperature perturbation is altered by neuromodulators. Neuron, 100:. 2018 Sep 18. pii: S0896-6273(18)30740-2. 

  • Marder, Eve (2018) Autobiography. In: The History of Neuroscience in Autobiography, Society for Neuroscience,Volume 10, Albright, T.D.and Squire, L.R., eds. pages 420-455.

  • Marder, Eve (2018) Foreward. In: Lessons from the Lobster, Eve Marder’s work in Neuroscience. Nassim, C. MIT Press, Cambridge. Pp. ix-xi.

  • Marder, E (2018) The Voice of Evidence, eLife, 7: e39915. DOI: https://doi.org/10.7554/eLife.39915

  • Otopalik, A. G., M. L. Goeritz, A. C. Sutton, T. Brookings, C. Guerini and E. Marder (2017). "Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion." Elife. 2017; 6: e22352.

  • Otopalik, A. G., A. C. Sutton, M. Banghart and E. Marder (2017). "When complex neuronal structures may not matter." Elife. 2017; 6: e23508.

  • Marder, E., Gutierrez, G.J., and Nusbaum, M.P. (2017) Complicating connectomes: electrical coupling creates parallel pathways and degenerate circuit mechanisms. Dev. Neurobiol., 77: 597-609.

  • Otopalik, A.G., Lane, B., Schulz, D.J. and Marder, E. (2017) Innexin Expression in electrically coupled motor circuits. Neurosc Lett, 10.1016/j.neulet.2017.07.016

  • Nusbaum, M.P., Blitz, D.M., and Marder, E. (2017) Functional consequences of neuropeptide/small molecule cotransmission. Nature Reviews Neuroscience, 18: 389-403.

  • Marder, E. (2017) Scientific Publishing: Beyond scoops to best practices. eLife 6:e30076. doi: 10.7554/eLife.30076

  • Marder, E. (2017) The importance of Remembering. eLife 6:e30599. doi.org/10.7554/eLife.30599

  • Gjorgjieva J, Drion G, Marder E. Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr Opin Neurobiol. 2016;37:44-52.

  • Clandinin, T. R. and E. Marder (2016). "Editorial overview: Microcircuit evolution and computation 2016." Curr Opin Neurobiol 41: 188-190.

  • Marder, E. (2016). "The rites of spring, Take 2." eLife. 2016; 5: e16846.

  • Marder, E., G. J. Gutierrez and M. P. Nusbaum (2016). "Complicating connectomes: Electrical coupling creates parallel pathways and degenerate circuit mechanisms." Dev Neurobiol. 2016 Jun 17.

  • Northcutt, A. J., K. M. Lett, V. B. Garcia, C. M. Diester, B. J. Lane, E. Marder and D. J. Schulz (2016). "Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation." BMC Genomics 17(1): 868.

  • O'Leary, T. and E. Marder (2016). "Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation." Curr Biol 26(21): 2935-2941.