Zvonimir Dogic

Zvonimir DogicResearch Associate Professor of Physics


PhD, Brandeis University, 2001


The research interests of Zvonimir Dogic and his group lie in elucidating rules that govern self-assembly of materials, with a particular emphasis being placed on the role the particle's shape and chirality play in these assembly processes. We strive to create very simple model systems in which precise control is possible over all the relevant parameters. This enables a rigorous and detailed comparison with theoretical predictions. The particles we use have very simple hard core repulsive interactions. Despite the apparent simplicity of these building blocks, we have demonstrated that through a careful choice of particle shape and chirality it is possible to assemble at least half a dozen unique structures. By necessity our research is highly interdisciplinary. To accomplish our goals, in addition to a host of experimental techniques, we also utilize theoretical statistical mechanics, computer simulations, biochemistry, various protein purification techniques and molecular cloning.

Group Website     CV and List of Publications (PDF)

Dogic Lab on Brandeis Science Blog     Dogic Lab on Youtube

Recent PhD Students

  • Bernard Hishamunda (2017), “Dynamics of Bulk and Confined Microtubule Active Gels”
    Present Position: Consultant, IBM

  • Feodor Hilitski (2017), “Probing Cytoskeletal Assemblies with Optical Traps”
    Present Position: Internal Consultant, Ab Initio, Lexington, MA

  • Stephen DeCamp (2016), “Dynamics of Active Nematic Liquid Crystals”
    Present position: Postdoctoral Fellow, Harvard University, Cambridge, MA

  • Mark Zakhary (2014)
    Present position: Clinical Fellow in Medical Physics, Mayo Clinic, Rochester, Minnesota

  • Sevim Yardimci (2014), “Networks formed by Rigid Filaments of Tunable Shape”
    Present position: Postdoctoral Fellow, Francis Crick Institute, London

  • Timothy Sanchez (2012), “Self-organization in Active Cytoskeletal Mixtures: Cilia-like Beating of Microtubule Bundles and Spontaneous Bulk Mixing.”
    Present Position: Postdoctoral Fellow, Harvard University, Cambridge, MA

  • Andrew Ward (2012), “Friction and Adhesion in Biological Polymer Bundles.”
    Present Position: Postdoctoral Fellow, Wyss Institute

  • Edward Barry (2011), “Self-Assembly of Colloidal Membranes and the Influence of Chirality.”
    Present Position: Postdoctoral Fellow, University of Chicago/Argonne National Lab (Heinrich Jaeger lab)

Sample of Recent Publications


Molecular engineering of chiral colloidal liquid crystals using DNA origami,” Mahs Siavashpouri, Christian H. Wachauf, Mark J. Zakhary, Florian Praetorious, Hendrik Dietz and Zvonimir Dogic. Nature Materials (2017).

Stucture and Intermolecular Interactions between L-Type Straight Flagellar Filaments,” Daniel Louzon, Avi Ginsburg, Walter Schwenger, Tom Dvir, Zvonimir Dogic and Uri Raviv. 112, 2183 (2017).

Achiral symmetry breaking and positiive Gaussina modulus lead to scalloped colloidal membranes,” Thomas Gibuad, C. Nadir Kaplan, Prerna Sharma, Mark. J. Zakhary, Rudolf Oldenbourg, Robert. B. Meyer, Randall D Kamien, Thomas R. Powers and Zvonimir Dogic. Proc. Nat. Acad. Sci., 333, E3376 (2017).

Transition from turbulent to coherent flows in confined three-dimensional active fluids,” Kun-ta Wu, Jean Bernard Hishamunda, Daniel. T.N. Chen, Stephen J. DeCamp, Ya-Wen Chang, Alberto Fernandez-Nieves, Seth Fraden, Zvonimir Dogic. Science, 355, eaal1979 (2017).


Filamentous phages as a model system in soft matter physics,” Zvonimir Dogic. Frontiers in Microbiology 7, 1013 (2016).

Entropic forces drive contraction of cytoskeletal networks,” Marcus Braun, Zdenek Lansky, Feodor Hilitski, Zvonimir Dogic and Stefan Diez. BioEssays 38, 474 (2016).

Entropic forces stabilize diverse emergent structures in colloidal membranes," Louis Kang, Thomas Gibaud, Zvonimir Dogic and Tom. C. Lubensky 2016, 12, 386-401 (2016).


ATP Consumption of Eukaryotic Flagella Measured at a Single-Cell Level,” Daniel T.N. Chen, M. Heymann, S. Fraden, D. Nicastro and Z. Dogic. Biophysical Journal, 109, 2562-2573 (2015).

Trains, tails and loops of partially adsorbed semi-flexible filaments,” David Welch, M.P. Lettinga, Marisol Ripoll, Zvonimir Dogic and Gerard A. Vliegenthart. Soft Matter, 11, 7507-7514 (2015).

Orientational order of motile defects in active nematcs,” Stephen J. Decamp, Gabriel S. Redner, Aparna Baskaran, Michael. F. Hagan and Zvonimir Dogic. Nature Materials, 14, 1110–1115 (2015).

Solid friction between soft filaments,” Andrew Ward, Feodor Hilitski, Walter Schwenger, David Welch, A.W.C. Lau, Vincenzo Vitelli, L. Mahadevan and Zvonimir Dogic. Nature Materials, 14, 583–588 (2015).

Measuring cohesion between macromolecular filaments, one pair at a time: Depletion-induced microtubule binding,” Feodor Hilitski, Andrew R. Ward, Luis Cajamarca, Michael F. Hagan, Gregory M. Grason and Zvonimir Dogic. Phys. Rev. Lett, 114, 138102 (2015).


Tunable dynamics of microtubule-based active isotropic gels,” Gil Henkin, Stephen J. DeCamp, Daniel T.N. Chen, Tim Sanchez and Zvonimir Dogic, to appear in Philosphical Transactions of the Royal Society A, A372, 20140142.

Hierarchical organization of chiral rafts in colloidal membranes,” Prerna Sharma, Andrew Ward, T. Gibaud, Michael F. Hagan and Zvonimir Dogic. Nature 514, 77-80 (2014).

Topology and dynamics of active nematic vesicles,” Felix C. Keber, Etienne Loiseau, Tim Sanchez, Stephen J. DeCamp, Luca Giomi, Mark J. Bowick, M. Cristina Marchetti, Zvonimir Dogic and Andreas R. Bausch, Science 345, 1135-1139 (2014).

Imprintable membranes from incomplete chiral coalescence,” Mark J. Zakhary, Thomas Gibaud, C. Nadir Kaplan, Edward Barry, Rudolf Oldenbourg, Robert B. Meyer and Zvonimir Dogic. Nature Communications 5, 3063 (2014).

Hypercomplex Liquid Crystals,” Zvonimir Dogic, Prerna Sharma and Mark J. Zakhary. Annual Review of Condensed Matter Physiscs 5, 137–57 (2014).


Engineering Oscillating Microtubule Bundles,” Tim Sanchez and Zvonimir Dogic, Methods in Enzymology 524, 205-226 (2013).

Geometrical edgeactants control interfacial bending rigidity of colloidal membranes,” Mark J. Zakhary, Prerna Sharma, AndrewWard, Sevim Yardimici and Zvonimir Dogic. Soft Matter 9, 8306-8313 (2013).


Spontaneous motion in hierarchically assembled active matter,” Tim Sanchez, Daniel T.N. Chen, Stephen J. DeCamp, Michael Heymann and Zvonimir Dogic, Nature 491, 431-434 (2012).
See commentary by Marchetti [pdf].

Reconfigurable Self-Assembly through chiral control of interfacial tension,”
T. Gibaud, E. Barry, M. Zakhary, M. Henglin, A. Ward, Y. Yang, C. Berciu, R. Oldenbourg, D. Nicastro, R. Meyer and Z. Dogic. Nature 481, 348-351 (2012). See commentary by Schaller and Bausch.

Self-assembly of 2D membranes from mixtures of hard rods and depleting polymers,” Y. Yang, E. Barry. Z. Dogic and M.F. Hagan. Soft Matter 8, 707-714 (2012).


Cilia-Like Beating of Active Microtubule Bundles,” T. Sanchez, D. Welch, D. Nicastro and Z. Dogic. Science 333, 456-459 (2011).


Entropy Driven Self-Assembly of Non-Amphiphilic Colloidal Membranes,” E. Barry and Z. Dogic, PNAS 107, 10348–10353 (2010). [Supp.]
2010 Cozzereli Prize from National Academy of Sciences — Web Link

Adenomatus polyposis coli protein nucleates actin assembly and synergizes with formin mDia1,” K. Okada, F. Bartolini, A.M. Deaconescu, J.B. Moseley, Z. Dogic, N. Grigorieff, G.G. Gundersen and B. L. Goode. J. Biol. Chem. 189, 1087-1096 (2010). [Supp.]

Circularization, photo-mechanical switching and a supercoiling transition of actin filaments,” T. Sanchez, I. Kulic and Z. Dogic. Phys. Rev. Lett. 104, 098103 (2010).


An active biopolymer network controlled by molecular motors,” G.H. Koenderink, Z. Dogic, F. Nakamura, P.M. Bendix, F.C. MacKintosh, J.H. Hartwig, T.P. Stossel and D.A. Weitz. PNAS 106, 15192-15197 (2009). [Supp.]

Condensation of isolated semi-flexible filaments driven by depletion interactions
A.W.C. Lau, A. Prasad and Z. Dogic. EPL 87, 48006 (2009).

A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length,” E. Barry E, D. Beller and Z. Dogic. Soft Matter 5, 2563-2570 (2009). [Supp.]

Pair Potential of Charged Colloidal Stars,” F. Huang, K. Addas, A. Ward A, T.N. Flynn, E. Velasco, M.F. Hagan, Z. Dogic and S. Fraden. Phys. Rev. Lett. 102, 108302 (2009).

Direct Measurement of the Twist Penetration Length in a Single Smectic A Layer of Colloidal Virus Particles,” E. Barry, Z. Dogic, R.B. Meyer, R. A. Pelcovits and R. Oldenbourg. J. of Phys. Chem. B 113, 3910-3913 (2009).


A quantitative analysis of contractility in active cytoskeletal protein networks
P.M. Bendix, G.J. Koenderink, D. Cuvelier, Z. Dogic, B.M. Koeleman, W.M. Brieher, C.M. Field, L. Mahadevan and D.A. Weitz. Biophys. J. 94, 3126-3136 (2008).


Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking,” C. P. Brangwynne, G.H. Koenderink, E. Barry, Z. Dogic, F.C. MacKintosh and D.A. Weitz. Biophys. J. 93, 346-359 (2007).


Vorticity banding in rodlike virus suspensions,” K.G. Kang, M.P. Lettinga, Z. Dogic, J.K.G. Dhont. Phys. Rev. E 74, 026307 (2006).

Counterion-mediated attraction and kinks on loops of semiflexible polyelectrolyte bundles,” A. Cebers, Z. Dogic Z, P.A. Janmey. Phys. Rev. Lett. 96, 247801 (2006).

Ordered phases of filamentous viruses,” Z. Dogic and S. Fraden. Curr. Opinion in Coll. & Inter. Sci. 11, 47-55 (2006).

Entropy-driven formation of a chiral liquid-crystalline phase of helical filaments
E. Barry E, Z. Hensel Z, Z. Dogic, M. Schribak and R. Oldenbourg. Phys. Rev. Lett. 96, 018305 (2006).


Flow behavior of colloidal rodlike viruses in the nematic phase,” M.P. Lettinga, Z. Dogic, H. Wang and J. Vermant. Langmuir 21, 8048-8057 (2005).

Self-diffusion of rod-like viruses in the nematic phase,” M.P. Lettinga, E. Barry and Z. Dogic. EPL 71, 692-698 (2005).

Phase behavior of rod-like viruses and virus-sphere mixtures,” Z. Dogic and S. Fraden.
Soft Matter: Complex Colloidal Suspensions, v. 2, Gompper G., Schick, M. eds., Wiley-VCH Weinheim (2005).


Melting of lamellar phases in temperature sensitive colloid-polymer suspensions
A.M. Alsayed, Z. Dogic and A.G. Yodh. Phys. Rev. Lett. 93, 057801 (2004) [pdf].

Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer,” Dextran Z. Dogic, K.R. Purdy, E. Grelet and S. Fraden. Phys. Rev. E 69, 051702 (2004).

Elongation and fluctuations of semiflexible polymers in a nematic solvent,” Z. Dogic, J. Zhang J, A.W.C. Lau, H. Aranda-Espinoza, P. Dalhaimer, D. E. Discher, P.A. Janmey, R.D. Kamien, T.C. Lubensky and A.G. Yod. Phys. Rev. Lett. 93, 219902 (2004). [Erratum]

Nematic nanotube gels,” M.F. Islam, A.M. Alsayed, Z. Dogic, J. Zhang, T.C. Lubensky and A.G. Yodh. Phys. Rev. Lett. 92, 088303 (2004).


Surface freezing and a two-step pathway of the isotropic-smectic phase transition in colloidal rods,” Z. Dogic. Phys. Rev. Lett. 91, 165701 (2003).

Measuring the nematic order of suspensions of colloidal fd virus by x-ray diffraction and optical birefringence,” K.R. Purdy, Z. Dogic, S. Fraden, A. Ruhm, L. Lurio and S.G.J. Mochrie. Phys. Rev. E 67, 031708 (2003).

Shear-banding and microstructure of colloids in shear flow,” J.K.G Dhont, M.P. Lettinga, Z. Dogic, T.A.J. Lenstra, H. Wang, S. Rathgeber, P. Carletto, L. Willner, H. Frielinghaus and P. Lindner. Farady Disscussions 123, 157-172 (2003).


Shear-induced displacement of isotropic-nematic spinodals,” T.A.J. Lenstra, Z. Dogic and J.K.G. Dhont. J. Chem. Phys. 114, 10151-10162 (2001).

Development of model colloidal liquid crystals and the kinetics of the isotropic-smectic transition,” Z. Dogic and S. Fraden. Phil. Tran. Roy. Soc. A 359, 997-1014 (2001).


Concentration-dependent sedimentation of colloidal rods,” Z. Dogic. A.P. Philipse, S. Fraden and J.K.G. Dhont. J. Chem. Phys. 113, 8368-8380 (2000).

Cholesteric phase in virus suspensions,” Z. Dogic and S. Fraden, Langmuir 16, 7820-7824 (2000).

Enhanced stability of layered phases in parallel hard spherocylinders due to addition of hard spheres,” Z. Dogic, D. Frenkel and S. Fraden. Phys. Rev. E 62, 3925-3933 (2000).


Entropically driven microphase transitions in mixtures of colloidal rods and spheres
M. Adams, Z. Dogic, S. L. Keller and Z. Dogic. Nature 393, 349-352 (1998).


Smectic phase in a colloidal suspension of semiflexible virus particles,” Z. Dogic and S. Fraden. Phys. Rev. Lett. 78, 2417-2420 (1997). [pdf]

Oscillating Microtubule Bundles

This video won first place in the physical science category for the 2013 Andor Insight Awards.

Microtubules are a bio-polymer composed of the protein tubulin and are used extensively in the cell for cellular division, cell motility, and transportation of cargo within the cell. Here, we investigate the material properties of mixtures of microtubules, a depletion agent, and the molecular motor Kinesin.